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Exact Design of TEM Microwave Networks

Using Quarter~Wave Lines*

R. J. WENZEL~, MEMBER, IEEE

Summary—Modem network theory procedures, based on Ozaki-

Ishiil synthesis techniques, are reviewed for application in the design

of TEM mode microwave networks using parallel coupled bars

and/or series and shunt stubs. The circuit equivalences and identi-
ties obtained are theoretically valid over the entire frequency spec-

trum and lead to several physical configurations having identical
response functions. These equivalent circuits often allow simplifica-
tion of the physicrd circuitry and realization of both broad and nar-

row bandwidths. The problem of practical circuit configurations is

dkcussed from the viewpoint of bandwidth and circuit element

values. Neglecting multiple responses, TEM low-pass, high-pass and

band-pass Butterworth filters are shown to offer steeper bandedge

characteristics than those of corresponding lumped element filters.
The use of complementary filters to match a source and load over a
wide frequency range is outlined and TEM realizations of these

complements are obtained. A simple procedure for obtaining element
values of Butterworth complements is described. An analysis of

parallel coupled filters is made and a simplified equivalent circuit is
obtained. An exact synthesis procedure for parallel coupled bar
filters and their equivalent forms is given. Construction details and

experimental results are describe d for two filters which use series

stubs.

1. INTRODUCTION

T

HE PURPOSE of this paper is to present a uni-

fied account of an exact modern network syn-

thesis applicable to the design of distributed

TEM mode networks. Emphasis is placed on microwave

circuit aspects rather than network theory wherever

possible. In the past, most TEM microwave networks

have been designed by use of image parameter methods.

The depth of understanding of lumped element circuits

afforded by modern network theory has not been com-

pletely extended to distributed networks. A discussion

of the relative merits of modern network and image

parameter network theories can be found in litera-

ture.1,3 The details of modern network synthesis are

beyond the scope of this paper and may be reviewed

in existing publications.2,4,6

This paper is presented as follows: Section II intro-

duces the transformation that allows distributed TEM
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networks to be treated in a manner analogous to lumped

element networks. Equivalent circuits for various con-

figurations are derived and tabulated, The “unit ele-

ment” is introduced as a necessary circuit element and

Kuroda’s identities are discussed. The section concludes

with a design example and a discussion of impedance

and frequency scaling.

Section III describes a number of equivalent physical

structures that realize the same circuit response.

Achievement of practical bandwidths and element

values is related to the circuit equivalences.

Section IV contains a comparison between lumped

element and distributed filter characteristics. The re-

petitive nature of the microwave circuits is not con-

sidered. Under this condition an analysis of the ability

of each type of network to approximate the ideal filter

characteristic is given.

Section V applies the theory of the preceding sections

to some interesting network problems. Parallel coupled

line filters are analyzed and equivalent circuits are ob-

tained. Complementary microwave filters are intro-

duced and network realizations are obtained. Construc-

tion details and experimental results are given for two

filters containing series stubs.

Appendix I demonstrates the methods for exact filter

synthesis of uniform parallel coupled bars, lines with

shunt shorted stubs and lines with series open stubs,

Appendix II outlines a procedure for eliminating ideal

transformers in networks having parallel coupled bars.

II. MODERN NETWORK FILTER THEORY

The basis for modern network theory was established

in the mid-1920’s with the work of Foster and Cauer

and was culminated with the conditions for realizability

of driving-point impedances stated by Brune in 1930.8

From a consideration of the energy functions associated

with a LLFPB (lumped, linear, finite, passive and

bilateral) network, Brune showed that, for a function of

a complex variable to be a realizable driving point

impedance, it is necessary and sufficient that it be a

“positive real” function—where a positive real (p.r.)

function is one that

1) is real for real values of the complex frequency

variable s = u +ju and

2) has a positive real part for values of s having a

positive real part.

GO. Brune, “Synthesis of a finite 2-terminal network whose
driving point impedance is a prescribed function of frequency, ”
J. Math. and Phys., vol. 10, pp. 191-236; 1930.
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From these two conditions, it is possible to determine

if a given impedance function of s can be realized.

The extension of lumped network synthesis tech-

niques to microwave networks was demonstrated by

Richards7 in 1948. In microwave networks, the im-

pedances of sections of transmission line are expressed

as functions of j tan fll where (3 is the phase constant

along the transmission line and 1 is the line length.

Richards showed that microwave networks composed

of lumped resistors and Iossless equal length transmis-

sion lines can be treated as lumped networks using a

transformation to the complex frequency variable

(1)

where f. is the real constant frequency at which 1 is a

quarter wavelength and f is the real frequency variable.

As can be seen, .S is periodic in 2fo and the response of a

microwave network will repeat at this interval. The

mapping properties of functions of the variable S are

illustrated in Fig. 1 for the case of a high pass S-plane

filter.

The synthesis procedure to be used becomes appar-

ent from Fig. 1.8 The required response is synthesized

using lumped elements in the S plane and is then con-

verted to a microwave structure in the~ plane. The only

remaining problem is to express the microwave struc-

tures as functions of S. One TEM mode structure to be

considered for application in modern network design is

shown in Fig. 2.

Jones and Bolljahn’ have derived the impedance

matrix for the configuration of Fig. 2(a).

where

cot 8
z,, = z,, = z?,, = 24, = –j(zo, + zoo) —

2

cOt e
212 = 221 = 234 = Z43 = – j(zo. – zoo) —

2

csc e
z,, = 23, = z,, ==2,2 = –j(zoe – zoo)—

2

csc e
Z14 = Z41 = 223 = .Z32 = – j(zoe + Zoo) T

? P. 1. Richards, “Resistor transmission-line circuits, ” PROC. I RE,
vol. 36, pp. 2 17–220; February, 1948.

8 The basic svnthesis mocedure used follows that of Ozaki and
Ishii.1

g E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission
line filters and directional couplers, ” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. 19, pp. 75-81; April, 1956.
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Fig. I—Mapping properties of a function of the variable
S/j = tan 7rf/2f0.

(a) (b) (c)

Fig. 2—Parallel coupled stripline four-port. (a) Four-port parameters.
(b) Even mode field configuration. (c) Odd mode field configura-

where

0 = electrical length of the line,

20. = even mode impedance,

ZOO= odd mode impedance.

The above relations hold for equal width strips. The

matrix for unequal strip widths, as well as methods for

calculating even and odd mode impedances, are given

by Ozaki and Ishii.l By using unequal strip widths, an

additional degree of freedom is obtained as required in

many practical cases. The analysis of unequal width

strips follows the same procedure as that used for equal

width strips. For simplicity, the derivation will be car-

ried out for the equal width case. Substituting

d
S=jtan —=jtan Ogives

2f o

20, + zoo
211 = 222 = 233 = 244 =

2s

20. – zoo
Zlz = Z!ll = Z34 = Z43 =

2.s -

20. – zoo ——
21$ = 231 = 224 = 242 = ~1 – s’

2s

20. + zoo —
Z14 = Z41 = Z23 = Z32 = ~1 – S2. (2)

2s
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To determine the impedance parameters when the

two-strip configuration is used as a twoport, it is only

necessary to apply the pertinent port conditions, For

example, assume that terminal (2) is grounded, (3) is

open, (1) is the input port and (4) is the output port.

The port conditions are then V,= O and 1,= O. It fol-

lows that

These properties are readily apparent if one thinks of

the u.e.’s as lengths of line inserted between a network

and its load or between the network and its driving

source.

Now consider the cascade of a unit element and an

S-plane inductorlo [Fig. 3(a)]. The ABCD matrix is

[1’[:;:1[1‘3)“’]=4A[;Z‘:”]
and, solving for VI and V4 in terms of 11 and 11, gives

( ‘1:’21

)(

ZIZZZ4
VI= zIl– —

)

11+ z14– — I,
’22 Z22

(

‘21’42

,, + ’44- = 1,. (4)
)(

V4= z4, –—

’22 ’22 )

Substituting (2) and arranging them in matrix form

gives

VI

[1V4

r2’0.’00

(Z04+ZOX——

1

2’0.’0.<1 –s2

(’O.+ ’O.)s

220,’0.<1 –s:

(zoe+zo.)s- 1

1W(zoe – ‘0.)2+ 4’0,’00

2s(’0,+200)

(5)

Before proceeding further, it is necessary to introduce

one additional circuit element, the ‘{unit element”

(u.e.), defined by the ABCD matrix as

4
r 1 zo.q

1 Is
11/l–s’z 1 “

(6)

The matrix of the unit element is the same as that of a

transmission line of electrical length 6 = r~/ (2~0) and

characteristic impedance ZO. A series of unit elements

has the following interesting properties when inserted

between a lumped network and a termination of im-

pedance ZO.

1) The driving point impedance remains exactly the

same as without the u.e.’s,

2) the magnitude of the transfer impedance remains

unchanged,

3) the phase of the transfer impedance may be

changed.

If unit elements are inserted before the lumped network

instead of between the network and its termination,

1) the input and transfer impedances are changed,

2) the magnitude of the reflection coefficient remains

unchanged,

3) the phase of the reflection coefficient is changed.

1 (L + ‘0)s
1

— [1<1–s’2 S2L;1 “
(7)

Zo Zo

The corresponding impedance matrix is

[’] =

Comparing this

lent, if

[

‘0 ‘0/1 – S2

7 s

1 1S2L + ‘O “
(8)

‘0<1 – S2

s s

with (5) shows the two to be equiva-

(a) Z. = ‘~~z~oO (b) L =
(’0. – ‘0.)2 . ~9)

2(’08 + ’00)

Solving for ZC, and ZOOgives

z,. =zo+L+dL(Zo+ r,),

Zozo, ZO + L + v’L(’o + L)
‘OO = —

2’0. – Zo –
. (lo)

l+; +&(’o+L)

Thus the equivalence of the networks shown in Fig.

3(b) has been established where ZO., ZOO, Z, and L are

related by (10).

A similar procedure can be applied for other port

conditions and equivalent circuits may be developed. A

list of all possible circuit configurations and their

equivalent S-plane circuits is given in Table I for the

case of unequal strip widths. The equal width case is

obtained by setting ZO,U = ZOeb and Zoo”= ZOob.

The synthesis procedure to be used is based upon a

series of equivalent circuits known as Kuroda’s iden-
tities. II Kuroda showed the equivalence of the circuits

listed in Table II (p. 98). As a sample proof, the equiva-

lence of the networks in Fig. 4 will be demonstrated by

10An .$plane inductor L represents the characteristic impedance
of a transmission line and has units of ohms. ?

11K. Kuroda, “Derivation Methods of Distributed Constant
Filters from Lumped Constant Filters, ” test for lectures at Joint
Meeting of Konsoi Branch of Institute of Elec. Commun., of Elec.,
and of Illumin. Engrs. of Japan, p. 32; October, 1952. (In Japanese. )
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(a)

(b)

Fig. 3—(a) Cascade connection of a unit element and an S-plane
inductor. (b) Equivalence of stripline and ,S-plane networks.

TABLE I

EQUIVALENT CIRCUITS FOR UNEQUAL STRIP WIDTHS
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TABLE II

KURODA’S IDENTITIES

Original Cmcuit I Equivalent C,rcuit

3EI= EEl=z
Zoln (n-l)

m ml-i-:

=+III==E
Fig. 4—Kuroda identity.

n

l+ZOC

z
l++-

1++
0

writing the ABCD matrix. For the network on the left

of Fig. 4,

“~[:s Ii ‘~1
‘4(4)sz~~+J

and, for the network on the right of Fig. 4,

@ ‘~1~ 7
1 (Z2 + L)S

1
. [141–s’; ‘:+1 “

(11)

(12)

The two networks are equivalent if

(a) Zl=Zz+L, (b) C+~=~, (c)~= ZIC. (13)

If a parameter n is defined by n = 1 +ZIC, then

(14)
n n

All techniques necessary for design have now been

presented. The procedure to be followed is:

1) Choose the function of S to be synthesized that

provides the desired response.

2)12 Perform the synthesis by modern network tech-

3)

4)

.5)

niques to yield a lumped network.

Insert a series of unit elements of characteristic

impedance Z. between the lumped network and

its load (of impedance ZO), if the input imped-

ance is to be preserved. If the quantity of interest

is a reflection coefficient, unit elements of char-

acteristic impedance Z. can also be inserted in

front of the network,

Use Kuroda’s identities to obtain a configuration

of unit elements and lumped elements that can

be separated into a cascade of circuits similar to

those in Table 1,

From the L, C and 20 values determine Z08 and

ZOO for each section.

13xam$le-It is desired to design a resistively termi-

nated, Butterworth filter having a reflection coefficient

characteristic of order three. The normalized element

values for this network, obtained by consulting tables,2,18

are shown in Fig. 5 (a). Since the quantity of interest is

a reflection coefficient, unit elements can be added both

before the load and after the source. Adding three unit

elements of characteristic impedance Z.= 1, two after

the source and one before the load, gives the network

of Fig. 5(b). The response of this network differs from

that of Fig. 5 (a) only in the phase of the reflection

coefficient.

Kuroda’s identities (Table II) are now applied to the

shunt capacitors to obtain a cascade of realizable TEM

elements. The transformed circuit is shown in Fig. 5(c).

Consulting the equivalent circuits in Table I shows

the above circuit can be realized as shown in Fig. 5(d).

ZO. and ZOOfor each section are obtained from the cor-

responding L and ZO in Fig. 5(c). Once ZO, and ZC~ are

known, the dimensions of the elements can be found

from available tables’’-’o or by the method given by

1! Lumped circuit element values have been computed and tabu-

lated for Butterworth and Chebyshev filter characteristics ?,’i The
tabulated element values must be chosen for the proper characteristic.
For example, element values for a Butterworth transfer impedance
which assumes an ideal current source are not the same as those for a
network having a Butterworth transmission coefficient which assumes
a matched source. In general, steps 1) and 2 ) can be omitted by con-
sulting the many excellent tables available,

‘3 L. Weinberg, “Network design by use of modern synthesis
techniques and tables,” PYOC. Natl. Electronics Con f.. vol. 12. DD.

704-817 ; 1956.
. . -“

‘4 S. B. Cohn, “Shielded coupled-strip transmission line, ” IRE
TRANS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3, pp.
29-38; October, 1955.

‘5 S. B. Cohn, “Parallel-coupled transmission-line resonator
filters, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-6. DU. 223–231: Am-ii. 1958.

7,1

“ W. J. Getsinger, “C&pled rectangular bars between parallel
plates, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, pp.
65–72; January, 1962.

17 W. , J Getsinger, VA coupled strip-line configuration using
minted-clrcmt construction that allows verv close counlimz. ” I RE
TRANS. ON MICROWAVE THEORY AND TECH~IQUES, vol~ 9, ~p. 535–
544; November, 1961.

‘8 S. B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines, ” IRE TRANS ON MICROWAVE TEEORY AND
TECHNIQUES, vol. 8, pp. 633–637; November, 1960.

N S$ B. Cohn ‘> Thickness correction for capacitive obstacles and

strip conductors, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. 8, pp. 638-644; Novermber, 1960.

20~. D. Horgan, “Coupled strip transmission lines with rectan-
gular inner conductors, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. 5, pp. 92-99; April, 1957.
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(a)

2 —

o-
Zo. , 2.= I

\

N . . . v . . .

0-

(b)

(c)

(d)

Fig. 5—(a) Third-order Butterworth filter. (b) Butterworth filter
with unit elements added. (c) Equivalent circuit after application
of Kuroda’s identities. (d) Microwave network that realizes a
third-order Butterworth response.
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:
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,0 2 f. 3,. 46. I

(b)

Fig. 6—(a) Renormalized Y-plane high-pass filter.
(b) Corresponding j-plane filter.

Ozaki and Ishii for the case of unequal stripwidths.

To make filter computations as simple as possible, as

in the above example, most networks are designed with

a load impedance level of 1 Q and a normalized band-edge

frequency of co= 1.

Changing the impedance level of a normalized S-

plane network to 20 is accomplished by multiplying all

normalized resistance and inductance values by ZO and

dividing all capacitance values by ZO.

Frequency normalization of S-plane networks cannot

be accomplished in the same manner as that associated

with lumped elements. The impedance of an S-plane

inductor is Z = jL tan 7rf/2f0. Frequency normalization

in the S plane, therefore, can be accomplished only by a

change in fo which is tantamount to a change in the

line lengths used in the TEM structure. For lumped

elements, a frequency change is accomplished by multi-

plying the frequency variable ~ by a constant. It is

obvious that the anaIogous S-plane variable S is not

multiplied by a constant in the above normalization

procedure.

The effect of a renormalization in the S-plane variable

j tan rf/2j0 is to change the location of the band-edge

response of the network in the real frequency interval

between O and fo. Renormalizations of this type are the

bandwidth controlling factors in TEM distributed line

filters. As an example, consider a normalized S-plane

high-pass filter which transforms to a band-pass filter

in the f plane (see Fig. 1). This filter has a bandwidth of

100 per cent about the point f~ and has a response

which is periodic in 2f0. Assume that a change is made

from S to the new variable S’= 10S. The pertinent

mapping points are now

s s’
-— .— . 0 maps into f = O,

j loj

s s’
.— —_ — 1 maps into j = 0,938~0,
i loj

s s’
—.—.————. m maps into j = fo.

.i lo’j

The renormalized mapping properties in the S’ plane

and in the ~ plane are shown in Fig. 6, together with the

responses of the original filter. Thus it is (seen that the

bandwidth of the distributed TEM filter is controlled

by a renormalization of the S-plane variable and the

effect of this renormalization is to change the charac-

teristic impedance of the component ele]ments in the

TEM structure.

II 1. EQUIVALENT TEM FILTER STRICTURES

When a filter has been designed by the methods of the

preceding section and the pertinent element values have

been obtained, the problem of constructing the network

remains. The design techniques presented do not di-

rectly take into account the practical limitations on ele-

ment values and circuit arrangement. However, j udi-

cious use of the techniques can often greatly simplify the

construction of the device.

A. Element Values

When working with S-plane capacitors and inductors,

it is very important to keep in mind the rarlge of element

values that can be realized. With lurnpedl circuit ca-

pacitances, element value ranges of 10b: 1 can be

achieved easily. In microwave circuits, the available

range is much more limited. For example, consider the

real frequency TEM circuit realization of an S-plane

capacitor which is represented by a Iengt’h of open cir-

cuited transmimion line [see Fig. 7(a)].

The constant l/C is associated with the characteristic

impedance of the line 20. By consulting graphs of 20 as

a function of line width, 21‘Zz it becomes apparent that

21 (~The Microwave Engineers Handbook, ” Horizon Home- Ivfkro-

wave, Inc., Eh-ookline, Mass.; 1962.
zz R. H. T. Bates, “The characteristic impedance of the shielded

slab line,” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. 4, pp. 28–33; January, 1956.
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(a)

(b) (c)

Fig. 7—(a) Stripline realization of .S-plane capacitor. (b) S-plane
network. (c) Stripline realization.

for ZO <10 the lines become very wide and for ZO >300

they become extremely narrow. Thus, the realizable

range of Zo, and consequently C, is only on the order of

30:1. As might be expected, this places a severe restric-

tion on the responses that can be obtained with a given

circuit configuration. Because of this restriction, the

practical realization of a filter with a specified response

may appear to be difficult if not impossible. Fortunately,

in many cases, it is possible to realize the same response

with more than one physical configuration. Before pro-

ceeding with the realization problem, it is useful to

investigate the behavior of some TEM line sections and

to obtain, where possible, different physical forms that

realize similar responses,

B. Equivalent TEM Elements

Assume that it is desired to obtain a TEM line re-

alization of the S-plane network shown in Fig. 7(b).

There is no simple circuit, as found by consulting Table

1, that realizes this network. However, the circuit can be

realized in a TEM network as a combination of two

shunt capacitors and a series unit element as shown in

Fig. 7(c).

Table III lists a number of S-plane equivalent cir-

cuits for elements with series and shunt open and short

circuited lines. The series stubs are constructed by using

either a double coaxial structure or a single coaxial

structure between flat ground planes. The impedance

Za of the unit element is the impedance of the inner

coaxial structure, with respect to the outer conductor,

and the impedance of the inner coaxial structure Z1 is

made numerically equal to L for the case of an inductor

or 1/C for a capacitor. The inner coax is filled with a

dielectric such that the series stub will fit within the

unit element length 10. Series stubs are useful in realiz-

ing large series capacitors or small series inductors. Con-

struction of the shunt stubs is self-explanatory.

The importance of the equivalent circuits of Table

III can be seen if one considers the realization of a unit

element followed by an S-plane inductor (see Table I).

Application of Kuroda’s first identity (Table 11) shows

this to be the same as a shunt capacitor followed by a

TABLE III

EQUIVALENT CIRCUITS FOR ELEMENTS WITH SERIES AND SHUNT
OPEN AND SHORT CIRCUITED LINES

TEM Circuit

Z3

nz z
1 2

.

z
3

m

z
‘1 2

z
3

+1-

Z
i

.a

T z
1

.

K-L+
m
-

Equivalent S-Plane Circuit

“=HEE22=+

“=‘3EIE2=Z2
‘=z’2ElEc”k

ZIEc=k
E121E=zl

‘==’=
“WE

unit element. This configuration can be realized as

shown in Fig. 8.

For a filter element of this type to have a broad stop

band, a large value of L or C is required. Assume values

of Z1 = 1 and L =2. Then it follows that Z2 = 3 and

C= f. Normalizing to an impedance level of 50 Q gives,

for the series line with shunt C, Zg = 150 Q and Z, = 75 Q.

Impedances of this magnitude are within the realizable

range and present no problem.

For the parallel coupled line realization, the even and

odd mode impedances are

Zo, = Zo+ L+ ~L(Zo+ L) = 5.45

-20.
zoo = = 0.55.

l+; +; UZO+L)

Normalizing to 50 Q gives Zo. = 272 Q and ZOO= 27.5 Q.

Attempts at realizing impedances of this order in
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~:w.m +--J--J+p
Fig. 8—Stripline equivalents.

parallel coupled lines lead to impractical configurations

requiring very small strips having extremely close cou-

pling. Conversely, if it is desired to achieve a narrow

stop-band, the parallel coupled element may well prove

easier to construct. This is a direct consequence of the

limited range of TEM impedance values obtainable.

C. Classification of Elements from Bandwidth Considera-

tions

In designing a filter, bandwidth is a major considera-

tion. For the case of microwave TEM filters, because

of the limited range of practical impedance values, it is

very important that the designer choose the physical

form applicable for a given bandwidth.

The starting point for the bandwidth consideration

is the synthesis of the S-plane filter. Filters that are

synthesized on a normalized basis will have their cutoff

at S/j= 1 and the corresponding TEM line realization

will have a band-edge cutoff at f 0/2. In general, the nor-

malized filters will have bandwidthszt of 100 per cent

centered aboutfo and will be periodic in ?fo. For changes

in bandwidth, the variable S is changed to S’= S/K,

(K> O) by substituting S’ for Sin the desired filter func-

tion. This changes the band-edge cutoff fc from fo/2 to

~.f e
tan — = K.

2f ~

Then

f, = X tan-l ~. (19)
%-

The fractional bandwidth then becomes

2(fo – f.)

( )

=2 l–3tan–1A7 .
j!l

(20)
T

For K >1, the bandwidth decreases and for K <1 it

increases.

Substituting the variable S’ for the variable S

changes the original filter elements L and C to the new

elements L’ =L/K and C’ = C/K. This means that for

narrow bandwidth (K> 1), small L’s and small C’s are

required, whereas large L’s and large C’s are required for

wide bandwidths (K< 1).

These considerations give a criterion for establishing

the bandwidth properties of TEM line configurations.

For the case of parallel coupled lines, practical realiza-

tion requires that 2.. and ZOObe reasonably close to 20

(a practical range being ZW <150 Q and ZOO> 20 Q). The

‘3 The term “bandwidth” will be taken as synonymous with
“bandwidth about $,” and can be either a stop band or a IXMS band.

relations in Table I provide the information necessary

to evaluate the bandwidth capabilities of these sections.

For example, consider the strip-line element in Table

I(c). This section has a stop-band centerec[ about f,, the

bandwidth of which is controlled by the value of L.

Inspection of the equations for 2.. and ZOO show that

these values are close to 20 only when L is small. Thus

this section is practically realizable only for L <1 and is

a good element for use in realizing narrow, stop-band

filters. On the other hand, its shunt stub-line equivalent

(Table III) can be realized for a wide stop lband without

encountering difficulty in achieving the element values.

For the case of the element in Table I (f j, the equa-

tions for 2., and ZOOshow that this section will be diffi-

cult to realize for small C’s the bandwidth capabilities

of all the sections shown in Tables I and III can be de-

termined in a similar manner.

IV. COMPARISON OF TEM AND LUMPED

ELEMENT FILTERS2~

When a filter is synthesized in the S plane, its re-

sponse in the real frequency plane is not identical to its

S-plane response. An S-plane Butterwort’h filter, for

example, does not have a Butterworth response with

respect to the frequency variable u in its T EM realiza-

tion.

A. High-Pass and Low-Pass Filters

Theorem: The frequency plane response of a nor-

malized S-plane Butterworth filter whose frequency

variable is tan 7rw/2c00 provides a better approximation

to the ideal low-pass or high-pass filter (characteristic

than does a frequency plane Butterworth filter whose

variable is co for O <OJ <WO.

Proof 1: Low-pass filter with band-edge cutoff at

w = COo/2. The Butterworth expression that approximates

the ideal characteristic is

\tl’=
1

1 + (frequency variable) ‘Z “
(21)

The ideal characteristic has a value of 1 in the range

O <u <uO/2. Further, in this frequency rang-e,

tanz<w
20Jo

and therefore

1 1
> (22)

7r&l 2“

()

l+@2n”

1+ tan~

Thus the variable tan rw/2u0 provides a. better ap-

proximation to the ideal characteristic than does the

variable u. In the frequency range wJ2! <OJ <CO, the

21This comparison is made only over the interval O <w< @ofor the
case of low-pass and high-pass filters and over the range O<co< 2a0 for
band-pa:s filters. Thus, the repetititve nature of the distributed filter is
not considered in the comparison.
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ideal characteristic has a value of zero. In

tan 7ru/2wO>U and thus

1 1
<

()

Zn 1+ 6P”
1+ tan~

2CO0

JanuaryON MICROWAVE THEORY AND TECHNIQUES

this range, For a bandwidth of U. about u = UO,

(
fractional bandwidth = M = 2 1 – ~ tan-l K

(23)
(.00 T )

[see (2o) ], then

1/ T&l\ 12

()Therefore, once again, the variable tan 7ru/2oJ0 provides
j tan —

2wl 1

a better approximation to the characteristic than does t = /t/;E.,= ~ ,. .

the variable W.
K

1+

Proof II: The proof for the case of a high-pass filter
[

1
tan ~~;

with band-edge cutoff at w = uO/2 follows in an analogous 1
manner.

B. Band-Pass Filters

The low-pass normalized

worth filter of order n has

teristic

I t(jfl)]’ =

lumped element

the transmission

An unnormalized low-pass filter of bandwidth

has the characteristic

101
jfl2 1

t—=
~c

()

Q2??”

1+ —

WC

The low-pass to band-pass transformation4 is

where

tif —wI = u, the filter bandwidth,

Butter-

Solving for K gives

charac-
or

I t];EM =

[1’4’---) h
. (26)

@c

2W0
1+

u. then
tan ~

2W0

The response of the TEM realization of the S-plane

filter is symmetric about w =Wo. The band-edges of both

the TEM and the lumped element band-pass filters can

be made identical provided that

~2=uo+2
2

Wc
@l=wo ——

2

WC2
WIQ = W02 — — = (.01.2.

U1W2‘WL2 the geometric center of the lumped ele- 4-

ment pass-band, Defining B = w,/cJO, the filter fractional bandwidth re-
WQ= upper band-edge frequency, stricted to the range O <B <1, and X =u/coO, in the
WI= lower band-edge frequency. range O <u < 2u0, allows the lumped element charac-

Then teristic to be written as

The TEM line realization of a high-pass S-plane But-

terworth filter can be used as a band-pass filter symmetric

about w = wO. For the normalized S-plane high-pass

filter,

It(’tanw=, ‘i ‘n “ ‘2’)
1+

1tan ~:
2W0 1

\tI;=
1

[ 1
(27)

l_x2_2 2“

1

4
1+

BX

and the TEM characteristic as

1
I J’I;EM=

[

2??
(28)

1+ Cot: cot+ 1
A comparison of the two filters is made by evacuating

the characteristic slopes at the low band-edge frequency

for fractional bandwidths in the range O <B <1.
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The slope of the TEM filter response at band-edge

X=1 –B/2 is given by

~l~lhM = mz

dX ()
(29)

X=1–B 12
2sin7r 1–+

The slope of the lumped element filter is

dx I X= I-B/z

2“(’”-3-1[1+31-:)3——
[1+(1-3”T‘

(30)

Defining A = 1 –B/2, the ratio of slopes is given by

SlopeTEM 7r(l — A)[l + A2’]2
.-

Slope~ –
. (31)

4A2n–l[A2 – A + 1] sin 7rA

The slope ratio is plotted in Fig. 9. From the graph, it is

apparent that the slope of the TEM filter characteristic

at band-edge is always greater than the corresponding

slope of the lumped element filter, the factor becoming

greater as the bandwidth is increased. Both have the

same limiting slope for narrow bandwidths (B~O). The

TEM filter has a sharper cutoff slope than the lumped

element filter, especially for moderate to wide band-

widths and for a large number of sections.

14
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Fig. 9—Ratio of low band-edge slopes for the TEM and lumped
elements band-pass filters vs fractional bandwidth for two- and
four-section Butterworth network.

V. AppLIcATIOIis

A. Equivalence of Stub and Parallel Coupled Line Filters

A common TEM line configuration used in many

filters is shown in Fig. 10(a) along with its equivalent

circuit. Cohn15 obtained a design procedure for this

type of filter by use of image parameter theory. The

methods of the preceding sections can be used to obtain

an exact synthesis procedure. Application c)f Kuroda’s

identities provide some insight into the synthesis prob-

lem. The basic identity to be used is shown in Fig. 10(b).

Application of this identity to the end fi ~ter section

gives the circuit of Fig. 10(c). The transformer is

brought out to accessible terminals by transforming

each component from left to right sides of the trans-

former, Fig. 10(d). The network between the trans-

former and the last unit element has the same general

form as the original circuit. Continuation of the above

process leads to the circuit of Fig. 10(e). The cascade of

transformers can be replaced by a single transformer

and the capacitor can be transformed to the input termi-

nals as shown in Fig. 10(f).

The dual network along with its equivalent circuit is

shown in Fig. 11 (a). Application of a procedure anal-

ogous to the one in Fig. 10 gives the dual equivalent

circuit shown in Fig. 11 (b). The following discussion

pertinent to an exact synthesis procedure applies equally

well to both the circuit of Fig. 10(a) and its dual Fig.

n(a).

One apparent result of the preceding transformation

is that the equivalent circuit, Fig. 10(f), has only IV+2

degrees of freedom: the N unit elements, the transformer

with turns ratio n; and the capacitor C. For the case

of symmetric networks, the transformation can be per-

formed in a manner such that n =1. This allows the

practical realization of these networks in the form of

stepped impedance lines with one series or shunt ele-

ment,

On the other hand, the circuit of Fig. 10(a) contains

2N+ 1 parameters but has the same order characteristic

polynomial as Fig. 10(f) and is thus a redunc[ant struc-

ture. In fact, for many practical filter structures, the N

unit element values can be set equal to the characteristic

impedance of the system and the N+ 1 capacitors still

provide enough degrees of freedom to allow realization

of the desired network function. Also, the parallel-

coupled filter has no S plane, L-C ladder equivalent,

valid over the entire frequency spectrum. Thus, any

attempt to obtain an exact synthesis procedure for this

type of network by using an L-C ladder prototype will

fail.

An exact synthesis of both the circuits of Fig. 10(a)

and (f) is possible, but the procedure is not the same as

for networks that have an L-C ladder, S-pli~ne proto-

type. An example of this method is giverl in Appen-

dix I.

Two important points should be emphasized as a re-

sult of the above discussion:

1) From the viewpoint of exactly synthesizing paral-

lel coupled bar filters [of the type in Fig. 10(a)

and Fig. 11 (a)], the only S-plane elements re-

quired are C’s, L’s, ideal transformers and unit

elements. Furthermore, all filters of this type have

been shown to require only one L or one C and
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1

I I 0

5F--II-I5-I-I
(a)

(b) .,=, +__L_
z.OcN+l

3! C’N+,
(c) ~., , “1<

35r-FL_”kr’Nn’
(d)

(e)

(f)

Fig. 10—(a) Stripline circuit and equivalent circuit. (b) Kuroda
identity. (c) Application of Kuroda identity to end section of
filter. (d) Network obtained by bringing the transformer to
accessible terminals. (e) Equivalent circuit after r-z cycles of
transformation. (f) Equivalent circuit with single transformer.

2)

can always be realized theoretically in the alter-

nate forms which do not require parallel coupled

bars.

By carrying out the synthesis procedure outlined

in Appendix I for a large number of cases, tableszs

of element values can be obtained which enable the

microwave engineer to design filters of the type

shown in Figs. 10 and 11 with known responses

n The many tables now available do not contain the eletnent
values obtained by the above synthesis procedure. This is a con-
sequence of the fact that these networks do not have an S-plane,
L-C ladder equivalent. The insertion loss function of these networks
is of a form different than those with L-C equivalents and thus leads
to different element values. See Appendix I (41) and (42) and the
following discussion.

= I

=

(a)

3mEI:mmEm

(b)

Fig. 1 l—(a) Stripline circuit and equivalent circuit. (b) Equivalent
circuit without parallel coupled bars.

over the entire frequency range. There is no band-

width limitation in the synthesis procedure. The

limitations that arise will be due to physical re-

alizability of the required element values.

An appreciation of the problem of physical realiza-

bility is important. The parallel coupled bar filter, Fig.

10(a); the uniform line with series open stubs; or the

stepped impedance filter with one series element, Fig.

10(f), realize the same response. However, for a given

bandwidth, one configuration may be more practical

from the standpoint of realizable element values.

B. Complementary Filters

In many situations, it is desirable to design a lossless

network to couple two resistances over a specified band

of frequencies in such a way that the driving source will

be properly matched outside the band. Assume that

the input impedance of the load and coupling network is

Z1. Then, if another impedance Z, is added in series such

that 21+2, is constant, the over-all input impedance is

resistive and a perfect match can be provided over the

entire frequency range. The dual situation is the addi-

tion of admittances in parallel such that Y1 + Y. is con-

stant. Impedances or admittances that add to give a

constant independent of frequency are said to be com-

plementary. 26

Theorem: A Iossless ladder network, terminated in a

1 Q resistor that realizes a Butterworth transfer im-

pedance 2,2(S), has a driving point impedance ZI(S)

which always has a complementary impedance ZC(S)

that can be realized in a Iossless ladder terminated in a

1 Q resistor. The network for Z,(S) can be obtained by

replacing the L’s and C’s of 21(S) with C’s and L’s,

respectively, where C= l/L, and L = I/C.

% For a thorough discussion of complementary filters, see Guille-
min,4 p. 476.
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As an example, if ZI(S) is realized in the ladder form

of Fig. 12(b), then Z,(S) is realized as shown in Fig.

12 (c). The network definitions are shown in Fig. 12(a).

Proof: For the network of Fig. 12(a), the input power

is dissipated in the 1 Q resistor, so that

I 1,12 Re [z,(@)] = I V~l’.

Thus,

Re [Z,(j.o)] = I Z&@) 1’ = ~ +1W2W (32)

for a Butterworth response.27 From the definition of

complementary filters, it follows that

Re [ZC(@)] = 1 – Re [Zl(@)] (33)

—— 1 – I z12(jO) 1’

1
=1–

1 + W2”

1
.

1 ‘m

()
1+ —

CIJ

tuting u’= 1/0 givesSubst

1
Re [Zc(jk)] =

1 + (o’)z~ “

(34)

(35)

Thus, the network of Z.(S) has the same geometry

and the change in variable results in converting every L

and C of Z(S) into a C and L where

c=+- L=;.

The prototype elements of Butterworth filters have

been tabulated in several references’, 28 and, as a result

of the above theorem, the complementary network pro-

totypes can be obtained by inspection.

By using the methods described in Section III it is

possible to design complementary microwave filters.

For practical microwave realization, the series connec-

tion required for complementary impedances is in most

cases not as desirable as the parallel connection of ad-

mittance complements. The complementary admittance

lumped element prototypes for a third-order Butter-

worth response are shown in Fig. 13(a).

For the admittance VI, the procedure for obtaining

the TEM line realization follows that of the example in

Section II. Since the input admittance is to be pre-

served, unit elements can only be inserted before the

‘ZTNote that this filter is desigued on a transfer impedance basis

and assumes a current source. When the two complementary filters
are connected, their common input is purely resistive (R) and pro-
vides a matched load to a generator with internal resistance equal
to R.

28 p. R. &ffe ‘f Computer prepared tables enable design of Ultra-

flat networks, ” E~ectronic Design, vol. 8, pp. 48-51; August31, 1960.

“f:)-+ii~tv’
V2 VI

z,2(s). — z, (s] . —

11 xl

(a)

,,_”----”+’”’r____L..,
c1 C2

---yr- ,

0 —?]
(h)

.c<o~~-----+~
(c)

Fig. 12 —(a) Network parameters. (b) Butterworth ladder
network. (c) Complementary ladder network.

z,,4 “.

.

(a)

-i 1 ‘1?
(c)

(d) (,)

Fig. 13—(a) Admittance complements. (b) Realization of YI, (c)
Realization of Y.. (d) Realization of Y1 without parallel coupled
lines. (e) Realization of Y, with a reduced number of parallel
coupled bars.
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load. The final equivalent circuit along with a TEM

line realization is shown in Fig. 13(b). A realization of

Y. can be obtained in a similar manner, but will, in

general, involve ideal transformers. These transformers

can often be eliminated by using a technique illustrated

in Appendix II. The final transformerless equivalent

circuit for Y., along with a TEM realization, is shown

in Fig. 13(c).

There are two major drawbacks to the TEM circuits

shown in Figs. 13(b) and (c): 1) the parallel coupled sec-

tions with shorted ends are difficult to construct and

2) the filter of Fig. 13(b) can provide only relatively

narrow stop bands due to the restriction previously dis-

cussed. These difficulties can be reduced if the circuits

are realized in a different form by using the identities in

Table III. Thus, the circuit of Fig. 13(b) can be realized

as shown in (d) 29and that of (c) can be realized as shown

in (e) .30 By using the identities in Table II 1, it is possible

to reduce filters with parallel coupled elements to an

alternate form.

C. Experimental Results

A number of filters employing most of the network

configurations discussed have been built and tested.

Excellent agreement with theory was obtained in all

cases, For construction details of the stop-band con-

figurations of open shunt stubs [Fig. 13(d)] or parallel

coupled bars [Fig. 13(b) ], the reader is referred to the

paper by Matthaei and Schiffman.31 Construction de-

tails of parallel coupled filters are available in the litera-

ture.82 To the author’s knowledge, no construction

details of filters employing series stubs have been re-

ported. In view of this, two filters employing these ele-

ments, one a band pass about jo, the other a band stop

about fo, will be described.

The S-plane prototype for the band-pass filter is

shown in Fig. 14(a). The element values are those cor-

responding to a Butterworth reflection coefficient char-

acteristic of order 3 and a bandwidth of 100 per cent.

Note that the usual 1, 2, 1 element distribution is not

used but rather the reciprocals of these values. This

arises from the fact that the 1, 2, 1 values provide a

low-pass S-plane response. A band pass about f. cor-

responds to a high-pass S-plane filter. The low-pass to

29 The ~~uivalence of the networks in Fig. 13(b) and (d) was

discussed by Matthaei and Schiffman at the 1963 PTGMTT National
Symposium in Santa Monica, Calif. Their paper, to be published in
the IEEE TRANSACTIONS under the title “Exact Design of Band-Stop
Microwave Filters, ” provides information relative to constructing
these networks.

JOThis network can be constructed entirely without parallel
coupled bars by using series stubs. See Section V-C.

31G. L, Matthaei and B. M. Schiff man, “Exact Design of Band-
Stop Microwave Filters, ” presented at 1963 PTGMTT National
Symposium, Santa Monical Calif., May 20-22.

32 G, L. Matthaei, ~~De51gn of wide-band (and narrow-band) band.

pass microwave filters on the insertion 10SS basis, ” IRE TRANS. ON
MICROWAVE THEORY AND TECHNIQUES, vol. 8, pp. 580–593; Novem-
ber, 1960.
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Fig. 14—(a) S-plane band-pass prototype. (b) Prototype after addi-
tion of two unit elements and renormalization to Z,= 50 Q. (c)
Construction details of three-section Butterworth filter.

high-pass transformation of a normalized network re-

quires replacing each shunt element by a dual series

element with a reciprocal value and each series element

by a dual shunt element with reciprocal value. (See

Guillemin,4 p. 602.)

Since the filter was to provide a specified reflection

coefficient, a unit element was added before and after

the Iossless part of the network. Consulting Table II 1,

the network is seen to be realizable as the cascade of a

series capacitor stub, a shunt inductor stub and another

series capacitor stub. No transformations were required.

Normalization to ZO = 50 L! gives the final equivalent cir-

cuit [Fig. 14(b) ].

The filter was constructed between ground planes

having a 0.250-inch spacing with a 50 Q round center

conductor. The design center frequency was 2 Gc. The

shunt 25$2 inductor was obtained by using two 50 Q

stubs, one on either side of the center conductor. Con-

struction details are shown in Fig. 14(c). The response

and VSWR of the filter is shown in Fig. 15(a) along

with the theoretical values. A photograph of the filter

is shown in Fig. 15(b). The primary purpose in con-

structing this filter was to establish the degree to which

junction effects would alter the multiple response at 6

Gc. As is evident from Fig. 15(a), these effects were

small. Insertion loss in the pass bands was less than 0.4

db and could be further improved by using silver plated

conductors rather than brass and aluminum.

The S-plane prototype for the stop-band filter is

shown in Fig. 16(a). The element values are those for a

five-section, 0, l-db ripple Chebyshev reflection coeffi-
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(b)

Fig. 15—(a) Insertion loss and VSWR of third-order Butterworth
filter, (b) three-section Butterworth filter.
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Fig. 16—(a) 5-section 0, l-db Chebyshev filter prototype. (b) Filter
circuit after application of Kuroda’s Identities and renormaliza-
tion to 50 Q. (c) Construction of stop-band filter with series
shorted stubs. The impedance of the unit element is realized by
using the correct dl/dn ratio and that of the inductors by using the
correct inner coaxial impedance.
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Fig. 17—(a) Insertion loss and VSWR of five-section Chebyshev
band-stop filter with series stubs. (b) Band-stop filter.

cient characteristic. The filter was designed to have a 30

per cent band stop about fo. For a normalized band-edge

frequency- of Q =1, the O.1-db bandwidth” is 100 per

cent, Dividing !2 by a constant K, where K is greater

than one, reduces the bandwidth in accordance with the

discussion in Section III-C. The required constant for a

30 per cent stop band is

mO.85j0
K=tan —= 4,16.

2ja

Application of Kuroda’s identities and renormalization

to ZO = 50 Q gives the final equivalent circuit of Fig.

16(b).

The filter was constructed using a double coaxial

structure. Construction details are shown in Fig. 16(c).

The response and VSWR of the filter is shown in Fig.

17(a) and a photograph of the filter is ~shown in Fig.

17(b).

Little difficulty was encountered in constructing the

filters with series stubs. In fact, junction effects for the

series stubs were found to be less significant than for

shunt stubs, especially when low impedance values were

required.

VI. CONCLUSIONS

TEM networks designed by modern network theory

techniques have been shown to exhibit the following

advantages over those based on approximate methods:

1) The equivalent circuits used are theoretically valid

over the entire frequency range.

2) Different physical structures that realize identical

responses can often be obtained.

3) Limitations are readily found on the response ob-

tainable with a given physical configuration.

w A Chebyschev filter characteristics as a 3-db point whose bca-
tions depend on the number of elements. For Q =1, the characteristic
differs from the ideal by a value equal to the specified ripple and
thus serves as a convenient bandwidth reference point.
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The networks, in general, employ a minimum

number of elements.

It is possible to construct networks that realize

exactly a desired input impedance, reflection

coefficient or phase response.

The small range of realizable impedance values has

been shown to be a limiting factor in the response ob-

tainable in several TEM filter configurations. Equiva-

lent network elements have been demonstrated to allow

simplification in physical circuitry as well as improve-

ment in response.

The real frequency response of TEM realizations of

S-plane high-pass or low-pass Butterworth filters was

shown to be better than that of corresponding lumped

element filters. An S-plane high-pass filter, used as a

band-pass filter in the frequency plane, was shown to

have steeper cutoff at the band-edge than the cor-

responding lumped element filter. In this comparison,

multiple responses of the microwave filter were not con-

sidered.

Complementary microwave filters are shown to be

useful in providing an exact match of source to load

over a wide frequency band. Following the procedure

given, the elements of Butterworth complements are

easily obtained. Techniques for eliminating ideal trans-

formers in networks with series capacitors and shunt

inductors are shown to be useful in obtaining practical

circuit configurations. The exact synthesis procedure

for parallel coupled line filters can be used to obtain

tables that will enable these filters to be designed in a

simple manner.

The basic circuit elements required for synthesizing

network configurations discussed in this paper are S-

plane inductors and capacitors, ideal transformers and

unit elements. The parallel coupled bar is not a neces-

sary element; however, it allows a different physical

realization for networks involving basic elements.

Application of the basic network theory described

in Section III is not restricted to the structures de-

scribed. Couplers, transformers and many other com-

mon microwave components can be analyzed and de-

signed by the use of these methods.

APPENDIX I

The following example demonstrates an exact syn-

thesis procedure applicable to

1) parallel coupled bars with open ends,

2) parallel coupled bars with shorted ends,

3) stepped quarter-wave sections with one series

open stub,

4) stepped quarter-wave sections with one shunt

shorted stub,

5) uniform line with quarter-wave spaced series open

stubs,

6) uniform line with quarter-wave spaced shunt

shorted stubs.

Types 1), 3) and 5) are equivalent and 2), 4) and 6)

are their respective duals. The basic prototype to be

considered is shown in Fig. 18(a).

The transmission function for a network of this type

is”

It)’=
–s’(1 – S’p’ = Q2(1 + Q2)N

(36)
I’lf+,(-s’) Pjv+, (w)

where

N = number of unit elements

PN+I is a polynomial of degree N + 1 in W.

In accordance with the discussion in Section V-A, the N

unit element impedance values can be arbitrarily as-

signed. A convenient choice is to set Z1 = Zz = . . . ZN

=1. The first step in the synthesis procedure is to ob-

tain a suitable form for I t[2.

Letting Q = tan, O gives

ItI’=
tanz 0(1 + tanz O)N sin2 e

P~+l(tan2 0) = Q~+,(cos20)
(37)

where

Q~+l is a polynomial of degree N+ 1 having dif-

ferent coefficients than those of PN+I.

Now, letting x = cos 8, (37) becomes

1–X2 X2—1
Iflz=

Q~+,(z2) = (.x2 –– 1) – GN+l(x2)

where

QN+I(X2) = GN+I(X’) + (1 – X2)

or

1,12= 1
1 – F,v+,(x’)

(38)

where

GN+1(X2)
FAT+,(X’) = ~, _ ~ “

The next step in the synthesis procedure is the ap-

proximation problem; that is, a criterion must be estab-

lished that defines the manner in which the function

F~+l(x2) is to be chosen to approximate the desired I t 12

characteristic. This is, in general, a difficult problem

and the reader is referred to literature z,A,s for detailed

discussions.

A common approximation is the maximally flat re-

sponse which is obtained by setting all but the (N+ I)st

34 This can be obtained by multiplying the A B CD matrices for the

network.
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The synthesis procedure is different depending upon

which of the possible configurations is desired. Richard’s

theorem,7 basically common to each procealure, is used

to remove unit elements.3s This theorem states that if

I ‘-mlmz —nltiz .S — O, then a unit element of impedance

Zi. (1) can be removed with the remaining impedance

beirw

Fig. 18—(a) Prototype for 1) parallel coupled bars with shorted
ends, 2) Line with quarter-wave short circuited stubs. (b)
Prototype for third-order Butterworth filter.

coefficient of FN~

terion gives

(x’) equal to zero. Applying this cri-

where

G is the (N+ I)st coefficient of the polynomial

Giv+,(x2).

The prototype for a third-order maximally flat filter

is shown in Fig. 18(b).

There are two unit elements; therefore, N= 2. Then

l–——
~2_l

Since

1
%2 . _—

1–s”

I t 1’= ——+-

1 – S2(1 _ S2)’2

or

]pl’==1– [j12=____–___ (39)
G – s?(l – sZ)~

The bandwidth of the filter is determined by the con-

stant G; using S =-i tan r.,/2f0 and setting I P 12 = 0.5
allows (39) to be solved for G. The fractional bandwidth

of the filter is

2(fo – f J
—— .

fo

The general network configuration of the filter is known

and it is sufficient for synthesis purposes to obtain the

input impedance that corresponds to the given I p I ‘. For

the details of this procedure, see Guillemin,4 p. 458.

For G = 36, the bandwidth is 70 per cent and

.9 + 4s’ + 7s
Zi.(S) = s, + ~Sz + 7S + 12 “ (40)

.S’2,.(1) – Zi.(S)
Z’i.(S) = Zi*(l)

S2,.(S) – Zin(! ) ‘

Under these conditions, both the numerator and

denominator of Z’,.(S) contain the factor (S’ – 1) and

Z’i.(S) is thus one degree lower than Zi.(S). The prod-

uct of the even parts of numerator and denominator,

respectively, of Zi. (S) is given by mlm2 and the product

of the odd parts is given by nlnz. A one stub network

can be obtained by applying Richard’s theorem to (40).

m1m2 – nlnz ]S=l = 4S2(4S2 + 12) — (S$ + 7S)2 Isql = O,

A unit element of impedance Zi.(l) =; can be removed,

The input impedance of the remaining network is

SZi.(1) – Zi.(S) s’ + 2s
Z’i*(S) = Zi~(l) —

SZi*(S) – Zin(l) = 4s’ T 14s + 24 ‘

The common S2 – 1 factor has been cancelled.

Y’i.(S) = l/Z’i.(S) has a pole at zero that can be re-

moved by taking out a shunt inductor,

12
—

,sL=;; 2s + S-124 + 14s + 4s2

24+ 12s

2s + 4S2.

The remaining impedance is Z“in (S)= (S+2)/(4S+2)

after cancellation of the common fact: or. Applying

Richard’s theorem to Z“in(S) shows that the remaining

impedance consists of a unit element of impedance ~

and a 142 resistance. The final circuit is shown in Fig.

19(a).

To obtain the equivalent three-stub network with

unit elements of impedance ZO = 1, partialJy remove a

pole (shunt inductor) of Yin(S) = l/Zi.(S) so that the

remaining input impedance Z’i. (.S) satisfies Z’i. (l) = 1.

This insures that the unit element with 20= 1 can be

removed and thus reduces the order of Zi,l(S) in accord-

ance with Richard’s theorem.

For example, using (4o),

a
—

s
_——

7S+4S2+S3112+7S +4S’+S8

7a + 4aS + as’

(12 – 7a) + (7 – 4a)S + (4 – a)S2 + S3.

35This theorem is discussed further by Grayze!, “.~ synthesis Pro-
cedure for transmission line net works, ” IRE 1 RANS. ON CIRCUIT
TEIEORY, Vol. CT-5, pp. 172-181; September, 1958.
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Fig. 19—(a) One-stub third-order Butterworth filter. (b) Three-stub
third-order. Butterworth filter. (c) Third-order Butterworth filter
synthesized in the equivalent form of Fig. 11(b).

Then

ss.+~2+7S

“in(s) = S3 + (4 – ~)sz + (7 – 4a)S + (12 – 7a) “

For Z’in(l) =1, a=l; therefore, L=l/a= 1.

The unit element of ZO = 1 can now be removed from

Z’i.(S). The above process is now repeated using the

remaining impedance. The final network is shown in

Fig. 19(b).

A third form of the network can be obtained by noting

that the network must have an equivalent circuit with a

shunt inductor, a transformer and a cascade of two unit

elements as demonstrated in Section V-A. For

s’ + 4s’ + 7s
Zi.(S) = s, + 4sz + 7S + 12 ‘

removal of the shunt inductor (pole of Yin at zero) gives

7S+4S2+S3112+ 7S+ 4S2+S3

or

L=;.

Then

S’+4S+7 = 7S’ + 28S + 49
Z’in(S) =

16S 7S2+16S+1 “
S2+ T++

I I

The turns ratio of the transformer can be obtained by

noting that

lim Z’i*(S) = n’
8-0

[see Fig. 19(c)]. This gives n’ =49 or n = 7’. Removal of

the transformer yields

I I
Z“in(s) = Ts’ + 1(5s + 1 “

Application of Richard’s theorem shows the remaining

network consists of a cascade of two unit elements of

impedance Z = 1/14 and Z = ~ terminated in a 1-Q

resistor. The final equivalent circuit is shown in Fig.

19(C).

The networks of Fig. 19 are exact equivalents. The

network of Fig. 19(b) can be realized as a line with

shunt stubs or with parallel coupled bars by using the

relations in Table 1. Elements for filters with a Cheb yshev

characteristic can be obtained in a similar manner by

applying a suitable approximation criterion to (38).

The filters discussed above are said to have a “maxi-

mally flat” or “Chebyshev” characteristic, but these

responses are not the same as those of networks that

have an S-plane, L-C ladder equivalent. The basic

equation for a maximally flat filter with an L-C proto-

type is

Ip\’= 1
1 + 0’”

(41)

whereas, for the filters discussed above, the basic equa-

tion is

Ip/, = 1
1 + Q’(1 + Q’)”–I “

(42)

It can be shown that filters of the type described by

(41) have steeper band-edge slopes than those whose

characteristics are given by (42). In the pass band of the

filters (fl>>l), (41) becomes nearly equal to (42). Thus

an L-C ladder can serve as the prototype for networks

with a characteristic given by (42), but the response

realized follows that of the prototype only for ~ in the

vicinity of jo. Whereas this approximation may lead to

a suitable filter, it cannot be used to realize a response

that is specified over the entire frequency range.

APPENDIX II

S-plane ladder networks with series capacitors and

shunt inductors generally will have ideal transformers

in their TEM realizations. These transformers can be

consolidated and transposed to the input or output

terminals where they can be realized in a section such as

that shown in Table I (g). In many cases, however, it is

possible to eliminate the ideal transformers. As an ex-

ample, consider the lower half circuit in Fig. 13(a) that

realizes YC. Adding three unit elements of characteristic

impedance 20= 1 to Fig. 13(a) gives the circuit of Fig.

20(a). Application of Kuroda’s identities gives Fig.

20(b). Transforming the 4/3 capacitor to the right hand

side of the second transformer, consolidating the trans-
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Fig. 20—Elimination of ideal transformers.

formers and transforming the 1/4 inductor to the right

hand side of the resultant transformer gives Fig. 20(c).

The transformer can be eliminated, if the series 2/3

capacitor is divided into a series combination, so that

the capacitor closest to the unit element, when trans-

formed by Kuroda’s third identity, yields a trans-

former with a 2:1 turns ratio or

L OL L

“ C=2.. .

The procedure is illustrated in Fig. 20(d) and the result-

ing circuit is shown in Fig. 20(e). A similar procedure

(a) (b)

(c) (d)

Fig. 2 l-—Realization using sections with ideal transformers.

can be applied to the circuit to the right of terminals au’

to obtain a realization without transformers. For the

case of a shunt inductor, the inductance is divided into

a parallel combination of inductors so that the required

turns ratio results.

The above admittance function can also be realized

in another way, The circuit of Fig. 20 is left unchanged,

if a pair of back to back ideal transformers of turns

ratio n is introduced as shown in Fig. 21 (a). Transform-

ing the inductor to the region between transformers

gives Fig, 21 (b). Dividing the inductor, so that

gives the circuit of Fig. 21 (c) which can be realized as

the cascade of two elements of the form shown in Table

I (g) where n is chosen to make the realization practical.

The TEM realization is shown in Fig. 21 (d).
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