94 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

January

Exact Design of TEM Microwave Networks
Using Quarter-Wave Lines™

R. J. WENZEL{, MEMBER, IEEE

Summary-—Modern network theory procedures, based on Ozaki-
Ishii! synthesis techniques, are reviewed for application in the design
of TEM mode microwave networks using parallel coupled bars
and/or series and shunt stubs. The circuit equivalences and identi-
ties obtained are theoretically valid over the entire frequency spec-
trum and lead to several physical configurations having identical
response functions. These equivalent circuits often allow simplifica-
tion of the physical circuitry and realization of both broad and nar-
row bandwidths. The problem of practical circuit configurations is
discussed from the viewpoint of bandwidth and circuit element
values. Neglecting multiple responses, TEM low-pass, high-pass and
band-pass Butterworth filters are shown to offer steeper bandedge
characteristics than those of corresponding lumped element filters.
The use of complementary filters to match a source and load over a
wide frequency range is outlined and TEM realizations of these
complements are obtained. A simple procedure for obtaining element
values of Butterworth complements is described. An analysis of
parallel coupled filters is made and a simplified equivalent circuit is
obtained. An exact synthesis procedure for parallel coupled bar
filters and their equivalent forms is given. Construction details and
experimental results are described for two filters which use series
stubs.

I. INTRODUCTION
THE PURPOSE of this paper is to present a uni-

fied account of an exact modern network syn-
thesis applicable to the design of distributed
TEM mode networks. Emphasis is placed on microwave
circuit aspects rather than network theory wherever
possible. In the past, most TEM microwave networks
have been designed by use of image parameter methods.
The depth of understanding of lumped element circuits
afforded by modern network theory has not been com-
pletely extended to distributed networks. A discussion
of the relative merits of modern network and image
parameter network theories can be found in litera-
ture.??® The details of modern network synthesis are
beyond the scope of this paper and may be reviewed
in existing publications.?43
This paper is presented as follows: Section II intro-
duces the transformation that allows distributed TEM
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networks to be treated in a manner analogous to lumped
element networks. Equivalent circuits for various con-
figurations are derived and tabulated. The “unit ele-
ment” is introduced as a necessary circuit element and
Kuroda’s identities are discussed. The section concludes
with a design example and a discussion of impedance
and frequency scaling.

Section I1I describes a number of equivalent physical
structures that realize the same circuit response.
Achievement of practical bandwidths and element
values is related to the circuit equivalences.

Section IV contains a comparison between lumped
element and distributed filter characteristics. The re-
petitive nature of the microwave circuits is not con-
sidered. Under this condition an analysis of the ability
of each type of network to approximate the ideal filter
characteristic is given.

Section V applies the theory of the preceding sections
to some interesting network problems. Parallel coupled
line filters are analyzed and equivalent circuits are ob-
tained. Complementary microwave filters are intro-
duced and network realizations are obtained. Construc-
tion details and experimental results are given for two
filters containing series stubs.

Appendix I demonstrates the methods for exact filter
synthesis of uniform parallel coupled bars, lines with
shunt shorted stubs and lines with series open stubs.
Appendix II outlines a procedure for eliminating ideal
transformers in networks having parallel coupled bars.

II. MopERN NETWORK FILTER THEORY

The basis for modern network theory was established
in the mid-1920’s with the work of Foster and Cauer
and was culminated with the conditions for realizability
of driving-point impedances stated by Brune in 1930.6
From a consideration of the energy functions associated
with a LLFPB (lumped, linear, finite, passive and
bilateral) network, Brune showed that, for a function of
a complex variable to be a realizable driving point
impedance, it is necessary and sufficient that it be a
“positive real” function—where a positive real (p.r.)
function is one that

1) is real for real values of the complex frequency
variable s=¢-+jw and

2) has a positive real part for values of s having a
positive real part,

6 O. Brune, “Synthesis of a finite 2-terminal network whose
driving point impedance is a prescribed function of frequency,”
J. Math. and Phys., vol. 10, pp. 191-236; 1930.
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From these two conditions, it is possible to determine
if a given impedance function of s can be realized.
The extension of lumped network synthesis tech-
niques to microwave networks was demonstrated by
Richards” in 1948. In microwave networks, the im-
pedances of sections of transmission line are expressed
as functions of j tan B! where 8 is the phase constant
along the transmission line and / is the line length.
Richards showed that microwave networks composed
of lumped resistors and lossless equal length transmis-
sion lines can be treated as lumped networks using a
transformation to the complex frequency variable

nf
S = jtan—— ¢
2fo
where f, is the real constant frequency at which I is a
quarter wavelength and f is the real frequency variable.
As can be seen, S is periodic in 2f, and the response of a
microwave network will repeat at this interval. The
mapping properties of functions of the variable S are
illustrated in Fig. 1 for the case of a high pass S-plane
filter.

The synthesis procedure to be used becomes appar-
ent from Fig. 1.8 The required response is synthesized
using lumped elements in the S plane and is then con-
verted to a microwave structure in the f plane. The only
remaining problem is to express the microwave struc-
tures as functions of S. One TEM mode structure to be
considered for application in modern network design is
shown in Fig. 2.

Jones and Bolljahn® have derived the impedance
matrix for the configuration of Fig. 2(a).

Vy Zy 2y Zyz Ziy Iy
Va B Zot Zog Loy Zos I,
Lvs Zow Zss Zss Zas || T
v L Zso Zug Z4 I
where
. cot @
Znw= Lo =Llgg = Ly = ’"](ZOe + Zm;)
cot 8
Ziw="1lun=27Tyu=2Zu=—1Zoe~ Zn)
. csc
JZin=IJsn=2Z2wu=2Zsyp=—F(ZLoe— Z) 5
csc d

Z14 = Z41 = Zzs = ZBZ = _j(ZOe + ZOo)

7 P. I. Richards, “Resistor transmission-line circuits,” Proc. IRE,
vol. 36, pp. 217-220; February, 1948.

8 The basic synthesis procedure used follows that of Ozaki and
Ishii.t

9 E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission
line filters and directional couplers,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. 19, pp. 75-81; April, 1956.

Wenzel: Design of TEM Networks Using Quarter-Wave Lines 95

Itl,l______ — =
> 1
T T

0 1

4

«.]m‘

HIGH-PASS S-PLANE FILTER

M 1

m | m\ N
f /72 f 2f
° ° o

0 31 4
A

‘O
BAND-PASS, REAL FREQUENCY PLANE FILTER
S
f= 0 MAPS INTO —J- =0
Io s
f=— MAPS INTO — =1
2 4

£= f MAPS INTO 5 = o
° 7

Fig. 1—Mapping properties of a function of the variable
S/j=tan =f/2f,.

"
DV AR H <* *}r@*@%ﬁ'

(a) (b) (c)

Fig. 2—Parallel coupled stripline four-port. (a) Four-port parameters.
(b) Even mode held configuration. (¢) Odd mode field configura-
tion.

where

§ =electrical length of the line,
Zo,=even mode impedance,
Zo=0dd mode impedance.

The above relations hold for equal width strips. The
matrix for unequal strip widths, as well as methods for
calculating even and odd mode impedances, are given
by Ozaki and Ishii.! By using unequal strip widths, an
additional degree of freedom is obtained as required in
many practical cases. The analysis of unequal width
strips follows the same procedure as that used for equal
width strips. For simplicity, the derivation will be car-
ried out for the equal width case. Substituting

. .
S = j tan —— = j tan 6 gives
2fo

Zy=Zy=Zy=2lu= M
25
T — Zor = Zae = Zuo = L
28
Zuy=Zy=Zu=2Zun= M \/1_:?
25
Zny=Zy=Zoy = Zp = 30——:{9—23— VI=35L (2
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To determine the impedance parameters when the
two-strip configuration is used as a twoport, it is only
necessary to apply the pertinent port conditions. For
example, assume that terminal (2) is grounded, (3) is
open, (1) is the input port and (4) is the output port.
The port conditions are then V,=0 and I;=0. It fol-
lows that

Vi VAYIVATIVATIDATE | W )
0 _ Loy Loy Zag Zos || I 3)
Vs Zy Zyy Ly Zan || O
4 Za Zyp Zas Zy I

and, solving for 7y and V, in terms of I; and Iy, gives

ZmZgl ZI2Z24
Vl = le - Il + Zl4 - I4
ZZZ ZZZ

YASVAT YAIYAT
I+ Zy — I,, 4

22 22

Vi= (Z41 -

Substituting (2) and arranging them in matrix form
gives

v

" 2Z0.200 2Z0Zo/1=8% [14
_ (Z0e+Z002L (ZoetZoo)S ‘ s)
LZZOeZOO\/ =57 S(Zos— Zoo)?+ 42020, |,I4
(ZootZ00)S 25(ZoetZo0)

Before proceeding further, it is necessary to introduce
one additional circuit element, the “unit element”
(u.e.), defined by the 4 BCD matrix as

. {1 ZsS
ﬁLZi i ©

The matrix of the unit element is the same as that of a
transmission line of electrical length 8==f/(2fs) and
characteristic impedance Z,. A series of unit elements
has the following interesting properties when inserted
between a lumped network and a termination of im-
pedance Z,.

1) The driving point impedance remains exactly the
same as without the u.e.’s,

2) the magnitude of the transfer impedance remains
unchanged,

3) the phase of the transfer impedance may be
changed.

If unit elements are inserted before the lumped network
instead of between the network and its termination,

1) the input and transfer impedances are changed,

2) the magnitude of the reflection coefficient remains
unchanged,

3) the phase of the reflection coefficient is changed.
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These properties are readily apparent if one thinks of
the u.e.’s as lengths of line inserted between a network
and its load or between the network and its driving
source.

Now consider the cascade of a unit element and an
S-plane inductor'® [Fig. 3(a)]. The 4BCD matrix is

-1 Z
[A B}_ 1 < oS [1 LSJ
c pl VIS = 1 0 1
L Z,
. [ @+zs
= |5 sr ) )
Vi—s2| 22X
| _£.Q 0

The corresponding impedance matrix is

“ Zo Zov/1 — §2

= 2 7 ®
B LZO\/l - sS4z, |
S S

Comparing this with (5) shows the two to be equiva-
lent, if

2Zy.Z0o (Zoo — Zpo)?
(@) Zo=——— (b) =————" (9)
ZOe + ZOa Z(ZOe + ZOD)
Solving for Z;, and Zg, gives
Zoe = Zo + L + \/_Lmy
ZoZ e Z L L(Z L
Zo, = A _ o+ L+ VL(Zo+ L) (10)
2Z4e — Zy

2L 2
I+ —+—VL(Z+ 1)
Zy 0
Thus the equivalence of the networks shown in Fig.
3(b) has been established where Z;,, Zy,, Zo and L are
related by (10).

A similar procedure can be applied for other port
conditions and equivalent circuits may be developed. A
list of all possible circuit configurations and their
equivalent S-plane circuits is given in Table I for the
case of unequal strip widths. The equal width case is
obtained by setting Zy.*=Z,b and Zy® = Zy’.

The synthesis procedure to be used is based upon a
series of equivalent circuits known as Kuroda’s iden-
tities.!! Kuroda showed the equivalence of the circuits
listed in Table I1 (p. 98). As a sample proof, the equiva-
lence of the networks in Fig. 4 will be demonstrated by

10 An S-plane inductor L represents the characteristic impedance
of a transmission line and has units of ohms.?

1 K. Kuroda, “Derivation Methods of Distributed Constant
Filters from Lumped Constant Filters,” test for lectures at Joint
Meeting of Konsoi Branch of Institute of Elec. Commun., of Elec.,
and of Illumin. Engrs. of Japan, p. 32; October, 1952. (In Japanese.)
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Fig. 3—(a) Cascade connection of a unit element and an S-plane
inductor. (b) Equivalence of stripline and S-plane networks.
TABLE 1
EquivaLenT Circults FOR UNEQUAL STrip WIDTHS
TEM Circuit Equivalent Circuit Element Values
(a)
— o o 2, 42
1 [+] 2 z = Qe o0
1 1 1
= = ——
Yo 2 (Z Z )
oe [e]e]
=z +L+ Lz +1)
(o] -1 [e] o
zZ +L+yL(Z +L]
_ o o
oo 2L 2
—_— — ¥
L+—= + = L{Z_¥1)
o o
z = —LC
oe CcZz
00
T
zZ =L- YL(L-=) LC>]
oo C
b
Ya-f-Yb—l +1 Yoe +Yoob 1
oe oe Ll 1.,2 P = Yo + —L—z"
b b
Zooa+ zoob =CL+CL Zoe i Zoo- = 2 +-—L
1 2 2 T % T ¢
2
z *+z P z vz "
0o oo oe 00
—_— = 1,
1 1 2 :
— ] - -
c T r n) 2’ >LC (n-1)
ZO()a + Zoob =
2 z Prz Pl g
1 oe 00 C
L f1--
n
a b
Yoe + Yoe - Y b + Y b
1 1 Qe oo. = _.1.. + —.1__
T t1— 2 - L, L,
i 2
a b
Zoo+zoo_ Zb+Z]D
ce oo _ 1 + 1
1o _C_L z c, "<
©) 2




98 IEEE TRANSACTIONS

TABLE I1
KuropA’s IDENTITIES

Original Circuit Equivalent Circuit n
z 0 o— 2 0
o {n-1)2
Cube — o 1+2 C
~ n -]
u.e, o o we. D n
Z /n{n-1)
o 1n
7 ——eY o—d Z
o z
L : TE 3 1+ -2
sve b0 | Oy ue L
c n-l
oz }—o | o—=z, Hb .
° (n-1)Z 1+ 7
o— u-e. }—0 oO—— u-e. L/ [}

O~~~z ——O O nZ n-1) L
o o & 1+ —
nZo °
o ue o | o ae o
L
1. ..
CT z, = z,
o—i |0

Fig. 4—Kuroda identity.

writing the A BCD matrix. For the network on the left
of Fig. 4,

1 01 ZsS

__1 S
1-—-58%1CS 1j|l— 1
v VA

. 1 ZyS
= 1 (11)
V1 — 5 <C+Z>S ZCS* 41
and, for the network on the right of Fig. 4,
1 Z.57M1 SL
41— 52 i 1 0 1
2
1 (Z:+D)S
“ oS Sty | 42
Z2 Z2

The two networks are equivalent if

1 1
(@) Zy=Zy+ L, @C+Z=Z,

L-—ZC 13
(C)‘Z‘;—— iC. (13)

If a parameter # is defined by #=142,C, then

Z1 n—1
Zz='——*; L= Zl.
n %

(14)

All techniques necessary for design have now been
presented. The procedure to be followed is:

1) Choose the function of S to be synthesized that
provides the desired response.
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2)12 Perform the synthesis by modern network tech-
niques to yield a lumped network.

3) Insert a series of unit elements of characteristic
impedance Z, between the lumped network and
its load (of impedance Z,), if the input imped-
ance is to be preserved. If the quantity of interest
is a reflection coefficient, unit elements of char-
acteristic impedance Z, can also be inserted in
front of the network,

4) Use Kuroda's identities to obtain a configuration
of unit elements and lumped elements that can
be separated into a cascade of circuits similar to
those in Table 1.

5) From the L, C and Z, values determine Zy, and
Zyo for each section.

Example—It is desired to design a resistively termi-
nated, Butterworth filter having a reflection coefficient
characteristic of order three. The normalized element
values for this network, obtained by consulting tables,213
are shown in Fig. 5(a). Since the quantity of interest is
a reflection coefficient, unit elements can be added both
before the load and after the source. Adding three unit
elements of characteristic impedance Z,=1, two after
the source and one before the load, gives the network
of Fig. 5(b). The response of this network differs from
that of Fig. 5(a) only in the phase of the reflection
coefficient.

Kuroda's identities (Table IT) are now applied to the
shunt capacitors to obtain a cascade of realizable TEM
elements. The transformed circuit is shown in Fig. 5(c).

Consulting the equivalent circuits in Table I shows
the above circuit can be realized as shown in Fig. 5(d).

Zoo and Z, for each section are obtained from the cor-
responding L and Z, in Fig. 5(c). Once Zy, and Z, are
known, the dimensions of the elements can be found
from available tables*—20 or by the method given by

2 L umped circuit element values have been computed and tabu-
lated for Butterworth and Chebyshev filter characteristics.2® The
tabulated element values must be chosen for the proper characteristic.
For example, element values for a Butterworth transfer impedance
which assumes an ideal current source are not the same as those for a
network having a Butterworth transmission coeficient which assumes
a matched source. In general, steps 1) and 2) can be omitted by con-
sulting the many excellent tables available.

131, Weinberg, “Network design by use of modern synthesis
techniques and tables,” Proc. Natl. Elecironics Conf., vol. 12. pp.
704-817; 1956.

S, B. Cohn, “Shielded coupled-strip transmission line,” IRE
TrRANS ON M1crOWAVE THEORY AND TECHNIQUES, vol, MTT-3, pp.
29-38; October, 1955.

15S, B. Cohn, “Parallel-coupled transmission-line resonator
filters,” IRE TrANS, ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-6, pp. 223-231; April, 1958.

18 W. J. Getsinger, “Coupled rectangular bars between parallel
plates,” IRE TraNs. oN MicrRowAvVE THEORY AND TECHNIQUES, pp.
65-72; January, 1962.

17W, ] Getsinger, “A coupled strip-line configuration using
printed-circuit construction that allows very close coupling,” IRE
TrANS. ON MicROWAVE THEORY AND TECHNIQUES, vol. 9, pp. 535~
544 November, 1961.

18 S. B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines,” IRE TRANS ON MICROWAVE THEORY AND
TECHNIQUES, vol. 8, pp. 633-637; November, 1960.

1 S, B. Cohn,” Thickness correction for capacitive obstacles and
strip conductors,” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. 8, pp. 638-644; Novermber, 1960.

20 J. D. Horgan, “Coupled strip transmission lines with rectan-
gular inner conductors,” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. 5, pp. 92-99; April, 1957,
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Fig. 5—(a) Third-order Butterworth filter. (b) Butterworth filter
with unit elements added. (c) Equivalent circuit after application
of Kuroda’s identities. (d) Microwave network that realizes a
third-order Butterworth response.
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Fig. 6—(a) Renormalized .S’-plane high-pass filter.
(b) Corresponding f-plane filter.

Ozaki and Ishii for the case of unequal stripwidths.

To make filter computations as simple as possible, as
in the above example, most networks are designed with
aload impedance level of 12 and a normalized band-edge
frequency of w=1.

Changing the impedance level of a normalized S-
plane network to Z, is accomplished by multiplying all
normalized resistance and inductance values by Zy and
dividing all capacitance values by Z,.

Frequency normalization of S-plane networks cannot
be accomplished in the same manner as that associated
with lumped elements. The impedance of an S-plane
inductor is Z=jL tan 7wf/2fs. Frequency normalization
in the S plane, therefore, can be accomplished only by a
change in fo which is tantamount to a change in the
line lengths used in the TEM structure. For lumped
elements, a frequency change is accomplished by multi-
plying the frequency variable w by a constant. It is
obvious that the analogous S-plane variable S is not
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multiplied by a constant in the above normalization
procedure.

The effect of a renormalization in the S-plane variable
j tan @f/2fs is to change the location of the band-edge
response of the network in the real frequency interval
between 0 and fy. Renormalizations of this type are the
bandwidth controlling factors in TEM distributed line
filters. As an example, consider a normalized S-plane
high-pass filter which transforms to a band-pass filter
in the f plane (see Fig. 1). This filter has a bandwidth of
100 per cent about the point f, and has a response
which is periodic in 2fs. Assume that a change is made
from S to the new variable §'=10S. The pertinent
mapping points are now

S s 0 into f =0

——= —— = maps mto j =
i1 ’ ’

S S’ .

— =—=1 maps into f = 0.938f,
i 10

LS‘ Sl

~— = — = o maps into f = fy.

J 105

The renormalized mapping properties in the .S’ plane
and in the f plane are shown in Fig. 6, together with the
responses of the original filter. Thus it is seen that the
bandwidth of the distributed TEM filter is controlled
by a renormalization of the S-plane variable and the
effect of this renormalization is to change the charac-
teristic impedance of the component elements in the
TEM structure.

I1I. EqQuivaLENT TEM FILTER STRUCTURES

When a filter has been designed by the methods of the
preceding section and the pertinent element values have
been obtained, the problem of constructing the network
remains. The design techniques presented do not di-
rectly take into account the practical limitations on ele-
ment values and circuit arrangement. However, judi-
cious use of the techniques can often greatly simplify the
construction of the device.

A. Element Values

When working with S-plane capacitors and inductors,
it is very important to keep in mind the range of element
values that can be realized. With lumped circuit ca-
pacitances, element value ranges of 10%:1 can be
achieved easily. In microwave circuits, the available
range is much more limited. For example, consider the
real frequency TEM circuit realization of an S-plane
capacitor which is represented by a length of open cir-
cuited transmission line [sec Fig. 7(a)].

The constant 1/C is associated with the characteristic
impedance of the line Zy. By consulting graphs of Z, as
a function of line width,?}?? it becomes apparent that

21 “The Microwave Engineers Handbook,” Horizon House-Micro-
wave, Inc., Brookline, Mass.; 1962.

22 R. H. T. Bates, “The characteristic impedance of the shielded
slab line,” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. 4, pp. 28-33; January, 1956.
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Fig. 7—(a) Stripline realization of S-plane capacitor. (b) S-plane
network. (c¢) Stripline realization.

for Z4 <10 the lines become very wide and for Z,> 300
they become extremely narrow. Thus, the realizable
range of Z, and consequently C, is only on the order of
30:1. As might be expected, this places a severe restric-
tion on the responses that can be obtained with a given
circuit configuration. Because of this restriction, the
practical realization of a filter with a specified response
may appear to be difficult if not impossible. Fortunately,
in many cases, it is possible to realize the same response
with more than one physical configuration. Before pro-
ceeding with the realization problem, it is useful to
investigate the behavior of some TEM line sections and
to obtain, where possible, different physical forms that
realize similar responses.

B. Equivalent TEM Elements

Assume that it is desired to obtain a TEM line re-
alization of the S-plane network shown in Fig. 7(b).
There is no simple circuit, as found by consulting Table
I, that realizes this network. However, the circuit can be
realized in a TEM network as a combination of two
shunt capacitors and a series unit element as shown in
Fig. 7(c).

Table III lists a number of S-plane equivalent cir-
cuits for elements with series and shunt open and short
circuited lines. The series stubs are constructed by using
either a double coaxial structure or a single coaxial
structure between flat ground planes. The impedance
Zy of the unit element is the impedance of the inner
coaxial structure, with respect to the outer conductor,
and the impedance of the inner coaxial structure Z is
made numerically equal to L for the case of an inductor
or 1/C for a capacitor. The inner coax is filled with a
dielectric such that the series stub will fit within the
unit element length /,. Series stubs are useful in realiz-
ing large series capacitors or small series inductors. Con-
struction of the shunt stubs is self-explanatory.

The importance of the equivalent circuits of Table
IIT can be seen if one considers the realization of a unit
element followed by an S-plane inductor (see Table I).
Application of Kuroda’s first identity (Table II) shows
this to be the same as a shunt capacitor followed by a
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TABLE II1

EoquivALENT CIRCUITS FOR ELEMENTS WITH SERIES AND SHUNT
OPEN AND SHORT CIRCUITED LINES

TEM Circuit
Z

Equivalent S-Plane Circuit

3
00— —o = 2°71] 1 1
z z 17z “3 €2 =z
1 2 Lo Thee 1T . 2
%3
0 Z
z z = E 3 =z
1 2 L =% La=22
u.
+ L -
—o o
z, L=z Z3 c = ——
c u.e. ZZ

—0 o, Z ‘I—O
Z‘1 C = El—
: u.€e. I : 1
Zq
o———— 1o o—
3 § =
Z, o L=z,
o o— -~
= L =Z_ orn —0
F—to—™ 1 z,
—@[_/ oJre ] o
NI
Z 2 1
= RPN o e
oLl o —
o n.e. o
—
- T ===
z = z
1 2

unit element. This configuration can be realized as
shown in Fig. 8.

For a filter element of this type to have a broad stop
band, a large value of L or Cis required. Assume values
of Zi=1 and L=2. Then it follows that Z;=3 and
C=3. Normalizing to an impedance level of 50 £ gives,
for the series line with shunt C, Z,=150 Q@ and Z,=75 Q.
Impedances of this magnitude are within the realizable
range and present no problem.

For the parallel coupled line realization, the even and
odd mode impedances are

Zoe=Zo+ L+ VL(Zo+ L) = 545
ZOe

ZOo = = 0.55
2t
Zo  Zy °

14+

Normalizing to 50 Q gives Zy, =272 Q and Z,,=27.5 Q.
Attempts at realizing impedances of this order in
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parallel coupled lines lead to impractical configurations
requiring very small strips having extremely close cou-
pling. Conversely, if it is desired to achieve a narrow
stop-band, the parallel coupled element may well prove
easier to construct. This is a direct consequence of the
limited range of TEM impedance values obtainable.

C. Classification of Elements from Bandwidih Considera-
tions

In designing a filter, bandwidth is a major considera-
tion. For the case of microwave TEM filters, because
of the limited range of practical impedance values, it is
very important that the designer choose the physical
form applicable for a given bandwidth.

The starting point for the bandwidth consideration
is the synthesis of the S-plane filter. Filters that are
synthesized on a normalized basis will have their cutoff
at S/j=1 and the corresponding TEM line realization
will have a band-edge cutoff at fy/2. In general, the nor-
malized filters will have bandwidths? of 100 per cent
centered about fy and will be periodic in 2f,. For changes
in bandwidth, the variable S is changed to S'=S/K,
(K >0) by substituting .S” for S in the desired filter func-
tion. This changes the band-edge cutoff f, from f,/2 to

tan e = K.
fo
Then
2
fom i (19)
3
The fractional bandwidth then becomes
2(fo — fe 2
Wh=1) _, <1 — " tan—t K> (20)
fo m

For K>1, the bandwidth decreases and for K <1 it
increases.

Substituting the wvariable S’ for the variable S
changes the original filter elements L and C to the new
elements L'=L/K and C’'=C/K. This means that for
narrow bandwidth (K >1), small L's and small C’s are
required, whereas large L’s and large C’s are required for
wide bandwidths (K <1).

These considerations give a criterion for establishing
the bandwidth properties of TEM line configurations.
For the case of parallel coupled lines, practical realiza-
tion requires that Zy, and Zy, be reasonably close to Z,
(a practical range being Z,, <150 @ and Zy,>20 Q). The

2 The term “bandwidth” will be taken as synonymous with
“bandwidth about f;” and can be either a stop band or a pass band.
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relations in Table I provide the information necessary
to evaluate the bandwidth capabilities of these sections.
For example, consider the strip-line element in Table
I{c). This section has a stop-band centered about f, the
bandwidth of which is controlled by the value of L.
Inspection of the equations for Zy, and Z, show that
these values are close to Z, only when L is small. Thus
this section is practically realizable only for L <1 and is
a good element for use in realizing narrow, stop-band
filters. On the other hand, its shunt stub-line equivalent
(Table I11) can be realized for a wide stop band without
encountering difficulty in achieving the element values,

For the case of the element in Table I(f), the equa-
tions for Z,, and Zy, show that this section will be diffi-
cult to realize for small C’s the bandwidth capabilities
of all the sections shown in Tables I and I1I can be de-
termined in a similar manner.

IV. ComparisoN oF TEM axp LUuMPED
ELEMENT FILTERS

When a filter is synthesized in the S plane, its re-
sponse in the real frequency plane is not identical to its
S-plane response. An S-plane Butterworth filter, for
example, does not have a Butterworth response with
respect to the frequency variable w in its TEM realiza-
tion.

A. High-Pass and Low-Pass Filters

Theorem: The frequency plane response of a nor-
malized S-plane Butterworth filter whose frequency
variable is tan ww/2w, provides a better approximation
to the ideal low-pass or high-pass filter characteristic
than does a frequency plane Butterworth filter whose
variable is w for 0 <w <wy.

Proof I: Low-pass filter with band-edge cutoff at
w=wy/2. The Butterworth expression that approximates
the ideal characteristic is

1
t]r = :
1 l 1 + (frequency variable)*

(21)

The ideal characteristic has a value of 1 in the range
0 <w <wy/2. Further, in this frequency range,

W

tan — < w
Zwo
and therefore
1 1
> . (22)
ww\ 2" 14+ @
14 (tan —~—>

Zwo

Thus the variable tan 7ww/2we provides a better ap-
proximation to the ideal characteristic than does the
variable w. In the frequency range wo/2 <w <ws, the

2 This comparison is made only over the interval 0 <w <wo for the
case of low-pass and high-pass filters and over the range 0 <w <2wofor
band-pass filters. Thus, the repetititve nature of thedistributed filteris
not considered in the comparison.
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ideal characteristic has a value of zero. In this range,
tan mw/2wy>w and thus

1 1

< .
7w\ 2 1+ w?
14+ (tan ~——)

wWo

(23)

Therefore, once again, the variable tan mw/2w, provides
a better approximation to the characteristic than does
the variable w.

Proof II: The proof for the case of a high-pass filter
with band-edge cutoff at w, =wy/2 follows in an analogous
manner.

B. Band-Pass Filters

The low-pass normalized lumped element Butter-
worth filter of order » has the transmission charac-
teristic

|G |2 = T o

An unnormalized low-pass filter of bandwidth w, then
has the characteristic
2 1

O e

The low-pass to band-pass transformation? is

w? — wg?

Q =
w

where

wy —w1 =w, the filter bandwidth,
wwy=wr? the geometric center of the lumped ele-
ment pass-band,
wy=upper band-edge {requency,
w1 =lower band-edge frequency.

Then
1

w2 — sz 2n
e
WWe
The TEM line realization of a high-pass S-plane But-

terworth filter can be used as a band-pass filter symmetric
about w=uwy. For the normalized S-plane high-pass

filter,
)
an —
J 2wo

| 1) |2 = | 8|7 = (24)

2 1
= — - (25)

i+ ——T
L
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For a bandwidth of w. about w=ws,
We 2
fractional bandwidth = — = 2 <1 — —tan™! K)
Wo T

[see (20)], then

2

- Tw
an ——
I ) 1
¢ "—_K = ]llTEM = % -
14+ ——m——
Tw
|_ tan —
2wy
Solving for K gives
T We
K= tan—(l — )
2 2(.00
or
2 1
l tlTEM = — (26)
T We “n
tan ———(1 - )
2 2w
1
Tw
tan —

Wo

The response of the TEM realization of the S-plane
filter is symmetric about w=w,. The band-edges of both
the TEM and the lumped element band-pass filters can
be made identical provided that

W
wy = wg + —
2

We
w1 = Wp — —
2
2 w? 2
wiwgy = wWp” — 4 = WL".

Defining B =w,/w,, the filter fractional bandwidth re-
stricted to the range 0<B <1, and X =w/w,, in the
range 0 <w<2wq, allows the lumped element charac-
teristic to be written as

of: :
tly = = 27
(ot
4
1+ l_
BX
and the TEM characteristic as
2 1
| ¢]rem = - (28)

B X ]2
14+ [cot —cot ﬂ}
4 2

A comparison of the two filters is made by evaluating
the characteristic slopes at the low band-edge frequency
for fractional bandwidths in the range 0 <B < 1.
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The slope of the TEM filter response at band-edge
X=1—B/2 is given by

d l ¢ ‘%EM _ ™ . (29)
dX  ix=t-pj2 ) ( B
2sin7w|1l — —
2
The slope of the lumped element filter is
2
e
dX ix-1-5/
B 2n—1 2 B 2
2n{1 —— 14 —{1—-—
(1-3) [+50-9)]
= - (30)

B 2712
[+ (-3) ]
2
Defining A =1—B/2, the ratio of slopes is given by

Sloperem (1 — A)[1 4 4]
Slope;, 44242 — A + 1] sin=4

€2y

The slope ratio is plotted in Fig. 9. From the graph, it is
apparent that the slope of the TEM filter characteristic
at band-edge is always greater than the corresponding
slope of the lumped element filter, the factor becoming
greater as the bandwidth is increased. Both have the
same limiting slope for narrow bandwidths (B—0). The
TEM filter has a sharper cutoff slope than the lumped
element filter, especially for moderate to wide band-
widths and for a large number of sections.

SLOPE TEM
SLOPE

6 n—A\y
)4
4 / n=2
e

| LA

1 e | e - — 4+ — — ]

>
B

0 0 02 03 04 05 06 07 08 10

Fig. 9—Ratio of low band-edge slopes for the TEM and lumped
elements band-pass filters vs fractional bandwidth for two- and
four-section Butterworth network.

V. APPLICATIONS
A. Eguivalence of Stub and Parallel Coupled Line Filters

A common TEM line configuration used in many
filters is shown in Fig. 10(a) along with its equivalent
circuit. Cohn' obtained a design procedure for this
type of filter by use of image parameter theory. The
methods of the preceding sections can be used to obtain
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an exact synthesis procedure. Application of Kuroda’s
identities provide some insight into the synthesis prob-
lem. The basic identity to be used is shown in Fig. 10(b).
Application of this identity to the end filter section
gives the circuit of Fig. 10(c). The transformer is
brought out to accessible terminals by transforming
each component from left to right sides of the trans-
former, Fig. 10(d). The network between the trans-
former and the last unit element has the same general
form as the original circuit. Continuation of the above
process leads to the circuit of Fig. 10(e). The cascade of
transformers can be replaced by a single transformer
and the capacitor can be transformed to the input termi-
nals as shown in Fig. 10(f).

The dual network along with its equivalent circuit is
shown in Fig. 11(a). Application of a procedure anal-
ogous to the one in Fig. 10 gives the dual equivalent
circuit shown in Fig. 11(b). The following discussion
pertinent to an exact synthesis procedure applies equally
well to both the circuit of Fig. 10(a) and its dual Fig.
11(a).

One apparent result of the preceding transformation
is that the equivalent circuit, Fig. 10(f), has only N+2
degrees of freedom: the IV unit elements, the transformer
with turns ratio #; and the capacitor C. For the case
of symmetric networks, the transformation can be per-
formed in a manner such that #=1. This allows the
practical realization of these networks in the form of
stepped impedance lines with one series or shunt ele-
ment.

On the other hand, the circuit of Fig. 10(a) contains
2N -+1 parameters but has the same order characteristic
polynominal as Fig. 10(f) and is thus a redundant struc-
ture. In fact, for many practical filter structures, the N
unit element values can be set equal to the characteristic
impedance of the system and the N-+1 capacitors still
provide enough degrees of freedom to allow realization
of the desired network function. Also, the parallel-
coupled filter has no .S plane, L-C ladder equivalent,
valid over the entire frequency spectrum. Thus, any
attempt to obtain an exact synthesis procedure for this
type of network by using an L-C ladder prototype will
fail.

An exact synthesis of both the circuits of Fig. 10(a)
and (f) is possible, but the procedure is not the same as
for networks that have an L-C ladder, S-plane proto-
type. An example of this method is given in Appen-
dix I.

Two important points should be emphasized as a re-
sult of the above discussion:

1) From the viewpoint of exactly synthesizing paral-
lel coupled bar filters [of the type in Fig. 10(a)
and Fig. 11(a)], the only S-plane elements re-
quired are C’s, L’s, ideal transformers and unit
elements. Furthermore, all filters of this type have
been shown to require only one L or one C and
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Fig. 10—(a) Stripline circuit and equivalent circuit. (b) Kuroda
identity. (c) Application of Kuroda identity to end section of
filter. (d) Network obtained by bringing the transformer to
accessible terminals. (e) Equivalent circuit after # cycles of
transformation. (f) Equivalent circuit with single transformer.

can always be realized theoretically in the alter-
nate forms which do not require parallel coupled
bars.

2) By carrying out the synthesis procedure outlined
in Appendix I for a large number of cases, tables®
of element values can be obtained which enable the
microwave engineer to design filters of the type
shown in Figs. 10 and 11 with known responses

% The many tables now available do not contain the element
values obtained by the above synthesis procedure. This is a con-
sequence of the fact that these networks do not have an S-plane,
L-C ladder equivalent. The insertion loss function of these networks
is of a form different than those with L-C equivalents and thus leads
to different element values. See Appendix I (41) and (42) and the
following discussion.
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Fig. 11—(a) Stripline circuit and equivalent circuit. (b) Equivalent
circuit without parallel coupled bars.

over the entire frequency range. There is no band-
width limitation in the synthesis procedure. The
limitations that arise will be due to physical re-
alizability of the required element values.

An appreciation of the problem of physical realiza-
bility is important. The parallel coupled bar filter, Fig.
10(a); the uniform line with series open stubs; or the
stepped impedance filter with one series element, Fig.
10(f), realize the same response. However, for a given
bandwidth, one configuration may be more practical
from the standpoint of realizable element values.

B. Complementary Filters

In many situations, it is desirable to design a lossless
network to couple two resistances over a specified band
of frequencies in such a way that the driving source will
be properly matched outside the band. Assume that
the input impedance of the load and coupling network is
Z1. Then, if another impedance Z, is added in series such
that Z;+Z, is constant, the over-all input impedance is
resistive and a perfect match can be provided over the
entire frequency range. The dual situation is the addi-
tion of admittances in parallel such that ¥Y;+ Y, is con-
stant. Impedances or admittances that add to give a
constant independent of frequency are said to be com-
plementary.2

Theorem: A lossless ladder network, terminated in a
1 @ resistor that realizes a Butterworth transfer im-
pedance Z1:(S), has a driving point impedance Z;(S)
which always has a complementary impedance Z.(S)
that can be realized in a lossless ladder terminated in a
1 & resistor. The network for Z,(S) can be obtained by
replacing the L’s and C’s of Zi(S) with C’s and L’s,
respectively, where C=1/L, and L=1/C.

% For a thorough discussion of complementary filters, see Guille-
min,? p. 476.
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As an example, if Z;(S) is realized in the ladder form
of Fig. 12(b), then Z.(S) is realized as shown in Fig.
12(c). The network definitions are shown in Fig. 12(a).

Proof: For the network of Fig. 12(a), the input power
is dissipated in the 1 Q resistor, so that

l Illz Re [Z1(]w)] = l V2|2.
Thus,

Re [Zl(jw)] = [ Z1a(jw) [2 = (32)

1
14+ @
for a Butterworth response.?” From the definition of
complementary filters, it follows that

Re [Zo(jw)] =1 — Re [Z1(jw)] (33)

=1— | Zu(jw) |2

1
I ™
: (39)
Substituting o' =1/w gives
. _ 1

Re [Z.(jw)] = 5 @) (35)

Thus, the network of Z,(S) has the same geometry
and the change in variable results in converting every L
and Cof Z(S) intoa C and L where

The prototype elements of Butterworth filters have
been tabulated in several references™-2% and, as a result
of the above theorem, the complementary network pro-
totypes can be obtained by inspection.

By using the methods described in Section IIT it is
possible to design complementary microwave filters.
For practical microwave realization, the series connec-
tion required for complementary impedances is in most
cases not as desirable as the parallel connection of ad-
mittance complements. The complementary admittance
lumped element prototypes for a third-order Butter-
worth response are shown in Fig. 13(a).

For the admittance V3, the procedure for obtaining
the TEM line realization follows that of the example in
Section II. Since the input admittance is to be pre-
served, unit elements can only be inserted before the

27 Note that this filter is designed on a transfer impedance basis
and assumes a current source. When the two complementary filters
are connected, their common input is purely resistive (R) and pro-
vides a matched load to a generator with internal resistance equal
to R.
28 P, R. Geffe, “Computer prepared tables enable design of ultra-
flat networks,” Electronic Design, vol. 8, pp. 48-51; August 31, 1960.
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Fig. 12—(a) Network parameters. (b) Butterworth ladder
network. (¢) Complementary ladder network.
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Fig. 13—(a) Admittance complements. (b) Realization of Yi. (c)
Realization of Y, (d) Realization of ¥, without parallel coupled
lines. (e) Realization of Y, with a reduced number of parallel
coupled bars.
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load. The final equivalent circuit along with a TEM
line realization is shown in Fig. 13(b). A realization of
Y. can be obtained in a similar manner, but will, in
general, involve ideal transformers. These transformers
can often be eliminated by using a technique illustrated
in Appendix II. The final transformerless equivalent
circuit for Y., along with a TEM realization, is shown
in Fig. 13(c).

There are two major drawbacks to the TEM circuits
shown in Figs. 13(b) and (c):1) the parallel coupled sec-
tions with shorted ends are difficult to construct and
2) the filter of Fig. 13(b) can provide only relatively
narrow stop bands due to the restriction previously dis-
cussed. These difficulties can be reduced if the circuits
are realized in a different form by using the identities in
Table II1. Thus, the circuit of Fig. 13(b) can be realized
asshown in (d)?? and that of (c) can be realized as shown
in (e).?° By using the identities in Table 111, it is possible
to reduce filters with parallel coupled elements to an
alternate form.

C. Experimental Results

A number of filters employing most of the network
configurations discussed have been built and tested.
Excellent agreement with theory was obtained in all
cases. For construction details of the stop-band con-
figurations of open shunt stubs [Fig. 13(d)] or parallel
coupled bars [Fig. 13(b)], the reader is referred to the
paper by Matthaei and Schiffman.?* Construction de-
tails of parallel coupled filters are available in the litera-
ture.’® To the author’s knowledge, no construction
details of filters employing series stubs have been re-
ported. In view of this, two filters employing these ele-
ments, one a band pass about fo, the other a band stop
about fo, will be described.

The S-plane prototype for the band-pass filter is
shown in Fig. 14(a). The element values are those cor-
responding to a Butterworth reflection coefficient char-
acteristic of order 3 and a bandwidth of 100 per cent.
Note that the usual 1, 2, 1 element distribution is not
used but rather the reciprocals of these values. This
arises from the fact that the 1, 2, 1 values provide a
low-pass S-plane response. A band pass about fy cor-
responds to a high-pass S-plane filter. The low-pass to

29 The equivalence of the networks in Fig. 13(b) and (d) was
discussed by Matthaei and Schiffman at the 1963 PTGMTT National
Symposium in Santa Monica, Calif. Their paper, to be published in
the IEEE TRANSACTIONS under the title “Exact Design of Band-Stop
Microwave Filters,” provides information relative to constructing
these networks.

30 This network can be constructed entirely without parallel
coupled bars by using series stubs. See Section V-C.

3 G, L. Matthaei and B. M. Schiffman, “Exact Design of Band-
Stop Microwave Filters,” presented at 1963 PTGMTT National
Symposium, Santa Monica, Calif., May 20-22.

32 G L. Matthaei, “Design of wide-band (and narrow-band) band-
pass microwave filters on the insertion loss basis,” IRE TRANS. ON
a/IICIi(;gz)AVE TrEORY AND TECHNIQUES, vol. 8, pp. 580-593; Novem-

er, .
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Fig. 14—(a) S-plane band-pass prototype. (b) Prototype after addi-
tion of two unit elements and renormalization to Zy;=350 Q. (c)
Construction details of three-section Butterworth filter.

high-pass transformation of a normalized network re-
quires replacing each shunt element by a dual series
element with a reciprocal value and each series element
by a dual shunt element with reciprocal value. (See
Guillemin,* p. 602.)

Since the filter was to provide a specified reflection
coefficient, a unit element was added before and after
the lossless part of the network. Consulting Table 111,
the network is seen to be realizable as the cascade of a
series capacitor stub, a shunt inductor stub and another
series capacitor stub. No transformations were required.
Normalization to Z, =508 gives the final equivalent cir-
cuit [Fig. 14(b)].

The filter was constructed between ground planes
having a 0.250-inch spacing with a 50  round center
conductor. The design center frequency was 2 Ge. The
shunt 25 € inductor was obtained by using two 50 Q
stubs, one on either side of the center conductor. Con-
struction details are shown in Fig. 14(c). The response
and VSWR of the filter is shown in Fig. 15(a) along
with the theoretical values. A photograph of the filter
is shown in Fig. 15(b). The primary purpose in con-
structing this filter was to establish the degree to which
junction effects would alter the multiple response at 6
Gce. As is evident from Fig. 15(a), these effects were
small. Insertion loss in the pass bands was less than 0.4
db and could be further improved by using silver plated
conductors rather than brass and aluminum.

The S-plane prototype for the stop-band filter is
shown in Fig. 16(a). The element values are those for a
five-section, 0.1-db ripple Chebyshev reflection coeffi-



1964

LESS THAN
0308

LESS THAN
04 0B

Q THEORETICAL
oo MEASURED

DB INSERTION
LOSS

1.0 T !3 !A T T

jat

(b)

Fig. 15——(a) Insertion loss and VSWR of third-order Butterworth
filter. (b) three-section Butterworth filter.
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Fig. 16—(a) S-section 0.1-db Chebyshev filter prototype. (b) Filter
circuit after application of Kuroda’s Identities and renormaliza-
tion to 50 Q. (c) Construction of stop-band filter with series
shorted stubs. The impedance of the unit element is realized by
using the correct di/d, ratio and that of the inductors by using the
correct inner coaxial impedance.

Using Quarter-Wave Lines 107

LESS THAN

le— o308 Jq——— LESS THAN 0.4 DB —

0 T 1

DB
INSER.
10sS

1.5 VSWR -
4 o [ PR
10 ~ N~ , ~ -
prld Sulamnd ! tef Swede L S |
T T T T 1
0 1 2 3 4 5 é 7 8
FREQUENCY.GC

(b)

Fig. 17—(a) Insertion loss and VSWR of five-section Chebyshev
band-stop filter with series stubs. (b) Band-stop filter.

cient characteristic. The filter was designed to have a 30
per cent band stop about fy. For a normalized band-edge
frequency of @=1, the 0.1-db bandwidth® is 100 per
cent. Dividing by a constant K, where K is greater
than one, reduces the bandwidth in accordance with the
discussion in Section I1I-C. The required constant for a
30 per cent stop band is

70.85/0

K = tan = 4.16.

0
Application of Kuroda's identities and renormalization
to Zo=350 % gives the final equivalent circuit of Fig.
16(h).

The filter was constructed using a double coaxial
structure. Construction details are shown in Fig. 16(c).
The response and VSWR of the filter is shown in Fig.
17(a) and a photograph of the filter is shown in Fig.
17(b).

Little difficulty was encountered in constructing the
filters with series stubs. In fact, junction effects for the
series stubs were found to be less significant than for
shunt stubs, especially when low impedance values were
required.

VI. CoNcLUSIONS

TEM networks designed by modern network theory
techniques have been shown to exhibit the following
advantages over those based on approximate methods:

1) Theequivalent circuits used are theoretically valid
over the entire frequency range.

Different physical structures that realize identical
responses can often be obtained.

Limitations are readily found on the response ob-
tainable with a given physical configuration.

2)

3)

3 A Chebyschev filter characteristics asa 3-db point whose loca-
tions depend on the number of elements. For @=1, the characteristic
differs from the ideal by a value equal to the specified ripple and
thus serves as a convenient bandwidth reference point.
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4) The networks, in general, employ a minimum
number of elements.

5) It is possible to construct networks that realize
exactly a desired input impedance, reflection
coefficient or phase response.

The small range of realizable impedance values has
been shown to be a limiting factor in the response ob-
tainable in several TEM filter configurations. Equiva-
lent network elements have been demonstrated to allow
simplification in physical circuitry as well as improve-
ment in response.

The real frequency response of TEM realizations of
S-plane high-pass or low-pass Butterworth filters was
shown to be better than that of corresponding lumped
element filters. An S-plane high-pass filter, used as a
band-pass filter in the frequency plane, was shown to
have steeper cutoff at the band-edge than the cor-
responding lumped element filter. In this comparison,
multiple responses of the microwave filter were not con-
sidered.

Complementary microwave filters are shown to be
useful in providing an exact match of source to load
over a wide frequency band. Following the procedure
given, the elements of Butterworth complements are
easily obtained. Techniques for eliminating ideal trans-
formers in networks with series capacitors and shunt
inductors are shown to be useful in obtaining practical
circuit configurations. The exact synthesis procedure
for parallel coupled line filters can be used to obtain
tables that will enable these filters to be designed in a
simple manner.

The basic circuit elements required for synthesizing
network configurations discussed in this paper are .S-
plane inductors and capacitors, ideal transformers and
unit elements. The parallel coupled bar is not a neces-
sary element; however, it allows a different physical
realization for networks involving basic elements.

Application of the basic network theory described
in Section III is not restricted to the structures de-
scribed. Couplers, transformers and many other com-
mon microwave components can be analyzed and de-
signed by the use of these methods.

APPENDIX |

The following example demonstrates an exact syn-
thesis procedure applicable to

1) parallel coupled bars with open ends,

2) parallel coupled bars with shorted ends,

3) stepped quarter-wave sections with one series
open stub,

4) stepped quarter-wave sections with one shunt
shorted stub,

5) uniform line with quarter-wave spaced series open
stubs,

6) uniform line with quarter-wave spaced shunt
shorted stubs.
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Types 1), 3) and 5) are equivalent and 2), 4) and 6)
are their respective duals. The basic prototype to be
considered is shown in Fig. 18(a).

The transmission function for a network of this type
is34
—S2(1 — SHY Q1 + Q)N

Py(—S5?) Py 1(2%)

1] = (36)

where
iy
S =70 =jtan—f—
2fy

N = number of unit elements

Py, is a polynominal of degree N 4 1 in Q2,

In accordance with the discussion in Section V-A, the NV
unit element impedance values can be arbitrarily as-
signed. A convenient choice is to set Z1=Zy= .« + Zy
=1. The first step in the synthesis procedure is to ob-
tain a suitable form for M 2,

Letting @ =tan, 0 gives

l t|2 _ tan’ 61 4 tan?d)n _
B Pyyi(tan? 6) B Qny1(cos? 6)

sin?

(37)

where

Qny1 is a polynomial of degree N+1 having dif-
ferent coefficients than those of Pyyi.

Now, letting x=cos f, (37) becomes

I ”2 1 — a2 x? — 1
Owia(x®) (22 — 1) — Gypa(x?)
where
Oni1(¥?) = Gyyi(2?) + (1 — «?)
or
1
[i]p = ——— (38)
1 — Fypa(e?)
where
G x?
Pt = 2D
%2 —1

The next step in the synthesis procedure is the ap-
proximation problem; that is, a criterion must be estab-
lished that defines the manner in which the function
Fy1(x?) is to be chosen to approximate the desired ltl z
characteristic. This is, in general, a difficult problem
and the reader is referred to literature?4s for detailed
discussions.

A common approximation is the maximally flat re-
sponse which is obtained by setting all but the (N+1)st

# This can be obtained by mutiplying the 4 BCD matrices for the
network.



1964

E z z - z

L “': ng u:. :EL:‘ L{ u:l
(2)

g | Bl

(b

Fig. 18—(a) Prototype for 1) parallel coupled bars with shorted
ends, 2) Line with quarter-wave short circuited stubs. (b)
Prototype for third-order Butterworth filter.

coefficient of Fy,1(x?) equal to zero. Applying this cri-
terion gives

1
I
G2 W+D
[,
x?2 — 1

where

G is the (N-+1)st coefficient of the polynomial
GN+1(DC2).
The prototype for a third-order maximally flat filter
is shown in Fig. 18(b).
There are two unit elements; therefore, N=2. Then

1
1=
Gx®
x2—1
Since
1
%2 = —,
1 — 52
1
2
f .
1 — R
S2(1 — §2)2
or
=1~ |¢]2= & (39)
P = TG -5 — 89

The bandwidth of the filter is determined by the con-
stant G; using S=j tan 7f./2f, and setting |p[2=0.5
allows (39) to be solved for G. The {ractional bandwidth
of the filter is

2o 1)
o

The general network configuration of the filter is known

and it is sufficient for synthesis purposes to obtain the

input impedance that corresponds to the given |p| 2 For

the details of this procedure, see Guillemin,* p. 458.
For G = 36, the bandwidth is 70 per cent and

S 4452 4 78
S3 4 452475 + 12
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The synthesis procedure is different depending upon
which of the possible configurations is desired. Richard’s
theorem,” basically common to each procedure, is used
to remove unit elements.? This theorem states that if
mymy—nins| 57 =0, then a unit element of impedance
Zin (1) can be removed with the remaining impedance
being
SZin(1) — Z:(S)

SZin(S) — Z(1)

Under these conditions, both the numerator and
denominator of Z’';,(S) contain the factor (S2—1) and
Z'i2(S) is thus one degree lower than Z;,(S). The prod-
uct of the even parts of numerator and denominator,
respectively, of Z;,(S) is given by mym, and the product
of the odd parts is given by #ims. A one stub network
can be obtained by applying Richard’s theorem to (40).

Mty — Mans|so1 = ASE(AS? 4 12) — ($? 4+ 78)% |51 = O

Z'in(S) = Zin(1)

A unit element of impedance Zin(1) =% can be removed.
The input impedance of the remaining network is

SZn(1) — Zin(S) S+ 28

Z'a(S) = Zin(1) = -
ST — 2o 1 T 15 7 3

The common S?—1 factor has been cancelled.
V'in(S)=1/2":,(S) has a pole at zero that can be re-
moved by taking out a shunt inductor,

12

1
L=—; 2548
12 24 + 145 + 45

24 4 125
25 + 452

The remaining impedance is Z"i,(S) = (S-+2)/(4S+2)
after cancellation of the common factor. Applying
Richard’s theorem to Z"’;,(S) shows that the remaining
impedance consists of a unit element of impedance %
and a 1-Q resistance. The final circuit is shown in Fig.
19(a).

To obtain the equivalent three-stub network with
unit elements of impedance Zy,=1, partially remove a
pole (shunt inductor) of Yi,(S)=1/Z;,(S) so that the
remaining input impedance Z’;,(S) satisfies Z';,(1) =1.
This insures that the unit element with Zy=1 can be
removed and thus reduces the order of Z;,(S) in accord-
ance with Richard’'s theorem.

For example, using (40),

a

S
7S 4+ 452 + 53[12 + 7S+ 457 + 8
7a + 4aS + oS5?
(12 —=T7a) + (7T —4a)S + (4 — a)5? + S5,
3 This theorem is discussed further by Grayzel, “A synthesis pro-

cedure for transmission line networks,” IRE Trans. oN CirCulr
Tarory, Vol. CT-5, pp. 172-181; September, 1958.
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Fig. 19—(a) One-stub third-order Butterworth filter. (b) Three-stub
third-order, Butterworth filter. (¢) Third-order Butterworth filter
synthesized in the equivalent form of Fig. 11(b).

Then
S84 452 + 718
S34+ 4 —a)S2+ (7T —4a)S 4+ (12 — 7a)

For Z'in(1) =1, a=1; therefore, L=1/a=1.

The unit element of Zy=1 can now be removed from
Z'n(S). The above process is now repeated using the
remaining impedance. The final network is shown in
Fig. 19(b).

A third form of the network can be obtained by noting
that the network must have an equivalent circuit with a
shunt inductor, a transformer and a cascade of two unit
elements as demonstrated in Section V-A. For

S8 4452+ 78
S+ 45 + 75 + 12

removal of the shunt inductor (pole of Vi, at zero) gives

Zlin(S) =

Zin(S) =

12
7S
7S + 452 + S*|12 + 7S + 452+ S¢
485 125?
12+ 2
7 7
S +1652+S3
7 7
or
7
L=—-
12
Then
20S) S?+ 4S5 + 7 75 4 285 + 49
el 165 1 7182+ 165 + 1
Sty

The turns ratio of the transformer can be obtained by
noting that

lim Z'n(S) = n?
8.0
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[see Fig. 19(c)]. This gives #2=49 or #="7. Removal of
the transformer yields
45

S2
41
rrT T

Z”in('S) —
752 4+ 165 + 1

Application of Richard’s theorem shows the remaining
network consists of a cascade of two unit elements of
impedance Z=1/14 and Z=% terminated in a 1-Q
resistor. The final equivalent circuit is shown in Fig.
19(c).

The networks of Fig. 19 are exact equivalents. The
network of Fig. 19(b) can be realized as a line with
shunt stubs or with parallel coupled bars by using the
relationsin Table . Elements for filters with a Chebyshev
characteristic can be obtained in a similar manner by
applying a suitable approximation criterion to (38).

The filters discussed above are said to have a “maxi-
mally flat” or “Chebyshev” characteristic, but these
responses are not the same as those of networks that
have an S-plane, L-C ladder equivalent. The basic
equation for a maximally flat filter with an L-C proto-
type is

1

T 1t o 40

| o
whereas, for the filters discussed above, the basic equa-
tion is

1
14 @1 -+ @)~!

It can be shown that filters of the type described by
(41) have steeper band-edge slopes than those whose
characteristics are given by (42). In the pass band of the
filters ({>>1), (41) becomes nearly equal to (42). Thus
an L-C'ladder can serve as the prototype for networks
with a characteristic given by (42), but the response
realized follows that of the prototype only for f in the
vicinity of fo. Whereas this approximation may lead to
a suitable filter, it cannot be used to realize a response
that is specified over the entire frequency range.

lof2= (42)

AprrPeENDIX II

S-plane ladder networks with series capacitors and
shunt inductors generally will have ideal transformers
in their TEM realizations. These transformers can be
consolidated and transposed to the input or output
terminals where they can be realized in a section such as
that shown in Table I(g). In many cases, however, it is
possible to eliminate the ideal transformers. As an ex-
ample, consider the lower half circuit in Fig. 13(a) that
realizes V.. Adding three unit elements of characteristic
impedance Zy=1 to Fig. 13(a) gives the circuit of Fig,
20(a). Application of Kuroda’s identities gives Fig.
20(b). Transforming the 4/3 capacitor to the right hand
side of the second transformer, consolidating the trans-
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Fig. 20—Elimination of ideal transformers.

formers and transforming the 1/4 inductor to the right
hand side of the resultant transformer gives Fig. 20(c).
The transformer can be eliminated, if the series 2/3
capacitor is divided into a series combination, so that
the capacitor closest to the unit element, when trans-
formed by Kuroda’s third identity, yields a trans-
former with a 2:1 turns ratio or

n=2=1+

2
- 14 =
ZoC c’

T C =2,

The procedure is illustrated in Fig. 20(d) and the result-
ing circuit is shown in Fig. 20(e). A similar procedure
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Fig. 21-—Realization using sections with ideal transformers.

can be applied to the circuit to the right of terminals aa’
to obtain a realization without transformers. For the
case of a shunt inductor, the inductance is divided into
a parallel combination of inductors so that the required
turns ratio results.

The above admittance function can also be realized
in another way. The circuit of Fig. 20 is left unchanged,
if a pair of back to back ideal transformers of turns
ratio # is introduced as shown in Fig. 21(a). Transform-
ing the inductor to the region between transformers
gives Fig. 21(b). Dividing the inductor, so that

gives the circuit of Fig. 21(c) which can be realized as
the cascade of two elements of the form shown in Table
I(g) where n is chosen to make the realization practical.
The TEM realization is shown in Fig. 21(d).
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